PURPOSE: To facilitate the demonstration of the prognostic value of radiomics, multicenter radiomics studies are needed. Pooling radiomic features of such data in a statistical analysis is however challenging, as they are sensitive to the variability...
BACKGROUND: The relationship between collagen features (CFs) in the tumor microenvironment and the treatment response to neoadjuvant chemoradiotherapy (nCRT) is still unknown. This study aimed to develop and validate a perdition model based on the CF...
International journal of radiation oncology, biology, physics
34229050
PURPOSE: To develop and validate a pretreatment computed tomography (CT)-based deep-learning (DL) model for predicting the treatment response to concurrent chemoradiation therapy (CCRT) among patients with locally advanced thoracic esophageal squamou...
This retrospective study has been conducted to validate the performance of deep learning-based survival models in glioblastoma (GBM) patients alongside the Cox proportional hazards model (CoxPH) and the random survival forest (RSF). Furthermore, the ...
BACKGROUND: Accurate response evaluation is necessary to select complete responders (CRs) for a watch-and-wait approach. Deep learning may aid in this process, but so far has never been evaluated for this purpose. The aim was to evaluate the accuracy...
OBJECTIVES: This preliminary study aimed to develop a deep learning (DL) model using diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) maps to predict local recurrence and 2-year progression-free survival (PFS) in laryngeal an...
PURPOSE: Recent studies have shown that severe depletion of the absolute lymphocyte count (ALC) induced by radiation therapy (RT) has been associated with poor overall survival of patients with many solid tumors. In this paper, we aimed to predict ra...
OBJECTIVES: To propose deep-learning (DL)-based predictive model for pathological complete response rate for resectable locally advanced esophageal squamous cell carcinoma (SCC) after neoadjuvant chemoradiotherapy (NCRT) with endoscopic images.
PURPOSE: To evaluate an MRI-based radiomic texture classifier alone and combined with radiologist qualitative assessment in predicting pathological complete response (pCR) using restaging MRI with internal training and external validation.
The benefits of robot-assisted laparoscopic surgery (RALS) for rectal cancer remain controversial. Only a few studies have evaluated the safety and feasibility of RALS following neoadjuvant chemoradiotherapy (NCRT). This study aimed to compare the sh...