Automated segmentation of pediatric brain tumors (PBTs) can support precise diagnosis and treatment monitoring, but it is still poorly investigated in literature. This study proposes two different Deep Learning approaches for semantic segmentation of...
Hematoporphyrin monomethyl ether-photodynamic therapy (HMME-PDT) is a safe and effective treatment for port-wine stain (PWS). Comprehensive methods for predicting HMME-PDT efficacy based on clinical factors are lacking. This study aims to develop and...
BACKGROUND: Attentional processes in toddlers are characterized by a state of alertness in which they focus their waking state for short periods. It is essential to develop assessment and attention stimulation protocols from an early age to improve t...
Mitochondrial dysfunction is crucial in the pathogenesis and drug resistance of pediatric T-cell acute lymphoblastic leukemia (T-ALL), a malignant hematological disorder with unrestrained proliferation of immature T-cells. Therefore, the primary obje...
Segmental/lobar pneumonia in children following Mycoplasma pneumoniae (MP) infection has a significant threat to the children's health, so early recognition of MP infection is critical to reduce the severity and improve the prognosis of segmental/lob...
The emergence of large language models (LLMs) opens new horizons to leverage, often unused, information in clinical text. Our study aims to capitalise on this new potential. Specifically, we examine the utility of text embeddings generated by LLMs in...
We use machine learning to identify innovative strategies to target azithromycin to the children with watery diarrhea who are most likely to benefit. Using data from a randomized trial of azithromycin for watery diarrhea (NCT03130114), we develop per...
AIMS: BoneFinder is a machine-learning tool that can automatically calculate Reimers migration percentage (RMP) and head-shaft angle (HSA) from paediatric cerebral palsy (CP) pelvic radiographs. This study's primary aim was to compare BoneFinder's fu...
PURPOSE: To assess the performance of a newly introduced deep learning-based reconstruction algorithm, namely the artificial intelligence iterative reconstruction (AIIR), in reducing the dose of pediatric chest CT by using the image data of below 3-y...
Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery
Jun 30, 2025
BACKGROUND: Medulloblastoma (MB) is the most common malignant brain tumor in children. Current diagnostic methods, such as MRI and lumbar puncture, are invasive and not sensitive enough, making early diagnosis challenging. MicroRNAs (miRNAs) have eme...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.