AIMC Topic: Child

Clear Filters Showing 81 to 90 of 3103 articles

Using deep learning for estimation of time-since-injury in pediatric accidental fractures.

Pediatric radiology
BACKGROUND: Estimating time-since-injury of healing fractures is imprecise, encompassing excessively wide timeframes. Most injured children are evaluated at non-children's hospitals, yet pediatric radiologists can disagree with up to one in six skele...

Fast and effective assessment for individuals with special needs form optimization and prediction models.

BMC psychology
The aim of this study was to determine which items in the psychological assessment forms used by counselling and research centres for individuals with special needs are effective in classifying individuals into special needs diagnostic categories. Da...

A deep learning-based ensemble for autism spectrum disorder diagnosis using facial images.

PloS one
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder leading to an inability to socially communicate and in extreme cases individuals are completely dependent on caregivers. ASD detection at early ages is crucial as early detection can red...

A machine learning model for predicting severe mycoplasma pneumoniae pneumonia in school-aged children.

BMC infectious diseases
OBJECTIVE: To develop an interpretable machine learning (ML) model for predicting severe Mycoplasma pneumoniae pneumonia (SMPP) in order to provide reliable factors for predicting the clinical type of the disease.

Functional connectivity anomalies in medication-naive children with ADHD: Diagnostic potential, symptoms interpretation, and a mediation model.

Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
OBJECTIVE: To identify reliable electroencephalography (EEG) biomarkers for attention deficit/hyperactivity disorder (ADHD) by investigating anomalous functional connectivity patterns and their clinical relevance.

Integrating Machine Learning and Follow-Up Variables to Improve Early Detection of Hepatocellular Carcinoma in Tyrosinemia Type 1: A Multicenter Study.

International journal of molecular sciences
Hepatocellular carcinoma (HCC) is a major complication of tyrosinemia type 1 (HT-1), an inborn error of metabolism affecting tyrosine catabolism. The risk of HCC is higher in late diagnoses despite treatment. Alpha-fetoprotein (AFP) is widely used to...

MALDI-TOF mass spectrometry combined with machine learning algorithms to identify protein profiles related to malaria infection in human sera from Côte d'Ivoire.

Malaria journal
BACKGROUND: In sub-Saharan Africa, Plasmodium falciparum is the most prevalent species of malaria parasites. In endemic areas, malaria is mainly diagnosed using microscopy or rapid diagnostic tests (RDTs), which have limited sensitivity, and microsco...

Applications of machine learning approaches for pediatric asthma exacerbation management: a systematic review.

BMC medical informatics and decision making
BACKGROUND: Pediatric asthma is a common chronic respiratory disease worldwide, and its acute exacerbation events significantly impact children's health and quality of life. Machine learning, an advanced data analysis technique, has shown great poten...

Artificial Intelligence Models for Pediatric Lung Sound Analysis: Systematic Review and Meta-Analysis.

Journal of medical Internet research
BACKGROUND: Pediatric respiratory diseases, including asthma and pneumonia, are major causes of morbidity and mortality in children. Auscultation of lung sounds is a key diagnostic tool but is prone to subjective variability. The integration of artif...

Joint resting state and structural networks characterize pediatric bipolar patients compared to healthy controls: a multimodal fusion approach.

NeuroImage
Pediatric bipolar disorder (PBD) is a highly debilitating condition, characterized by alternating episodes of mania and depression, with intervening periods of remission. Limited information is available about the functional and structural abnormalit...