AIMC Topic: Cost-Benefit Analysis

Clear Filters Showing 11 to 20 of 183 articles

Advanced deep learning models for predicting elemental concentrations in iron ore mine using XRF data: a cost-effective alternative to ICP-MS methods.

Environmental geochemistry and health
Accurate elemental analysis is a critical requirement for mineral exploration, particularly in regions like Iran, where the mining sector has experienced a substantial increase in exploration activities over the past decade. Inductively Coupled Plasm...

The feasibility and cost-effectiveness of implementing mobile low-dose computed tomography with an AI-based diagnostic system in underserved populations.

BMC cancer
BACKGROUND: Low-dose computed tomography (LDCT) significantly increases early detection rates of lung cancer and reduces lung cancer-related mortality by 20%. However, many significant screening barriers remain. This study conduct an initial feasibil...

Cost-Efficient Domain-Adaptive Pretraining of Language Models for Optoelectronics Applications.

Journal of chemical information and modeling
Pretrained language models have demonstrated strong capability and versatility in natural language processing (NLP) tasks, and they have important applications in optoelectronics research, such as data mining and topic modeling. Many language models ...

Flexible and cost-effective deep learning for accelerated multi-parametric relaxometry using phase-cycled bSSFP.

Scientific reports
To accelerate the clinical adoption of quantitative magnetic resonance imaging (qMRI), frameworks are needed that not only allow for rapid acquisition, but also flexibility, cost efficiency, and high accuracy in parameter mapping. In this study, feed...

Cost-effectiveness of AI-based diabetic retinopathy screening in nationwide health checkups and diabetes management in Japan: A modeling study.

Diabetes research and clinical practice
AIMS: We evaluated the cost-effectiveness of artificial intelligence (AI)-based diabetic retinopathy (DR) screening in Japan. This evaluation compared the simultaneous introduction of AI in nationwide health checkups, namely "specific health check-up...

AI-generated cancer prevention influencers can target risk groups on social media at low cost.

European journal of cancer (Oxford, England : 1990)
BACKGROUND: This study explores the potential of Artificial Intelligence (AI)-generated social media influencers to disseminate cancer prevention messages. Utilizing a Generative AI (GenAI) application, we created a virtual persona, "Wanda", to promo...

Design of a Cost-Effective Ultrasound Force Sensor and Force Control System for Robotic Extra-Body Ultrasound Imaging.

Sensors (Basel, Switzerland)
Ultrasound imaging is widely valued for its safety, non-invasiveness, and real-time capabilities but is often limited by operator variability, affecting image quality and reproducibility. Robot-assisted ultrasound may provide a solution by delivering...

Recruiting Young People for Digital Mental Health Research: Lessons From an AI-Driven Adaptive Trial.

Journal of medical Internet research
BACKGROUND: With increasing adoption of remote clinical trials in digital mental health, identifying cost-effective and time-efficient recruitment methodologies is crucial for the success of such trials. Evidence on whether web-based recruitment meth...

Cost-effectiveness of a machine learning risk prediction model (LungFlag) in the selection of high-risk individuals for non-small cell lung cancer screening in Spain.

Journal of medical economics
OBJECTIVE: The LungFlag risk prediction model uses individualized clinical variables to identify individuals at high-risk of non-small cell lung cancer (NSCLC) for screening with low-dose computed tomography (LDCT). This study evaluates the cost-effe...

Machine learning-based automated waste sorting in the construction industry: A comparative competitiveness case study.

Waste management (New York, N.Y.)
This article presents a comparative analysis of the circularity and cost-efficiency of two distinct construction material recycling processes: ML-based automated sorting (MLAS) and conventional sorting technologies. Empirical data was collected from ...