AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Databases, Factual

Showing 291 to 300 of 2902 articles

Clear Filters

Automated biventricular quantification in patients with repaired tetralogy of Fallot using a three-dimensional deep learning segmentation model.

Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance
BACKGROUND: Deep learning is the state-of-the-art approach for automated segmentation of the left ventricle (LV) and right ventricle (RV) in cardiovascular magnetic resonance (CMR) images. However, these models have been mostly trained and validated ...

A multiscale distributed neural computing model database (NCMD) for neuromorphic architecture.

Neural networks : the official journal of the International Neural Network Society
Distributed neuromorphic architecture is a promising technique for on-chip processing of multiple tasks. Deploying the constructed model in a distributed neuromorphic system, however, remains time-consuming and challenging due to considerations such ...

Advancing healthcare practice and education via data sharing: demonstrating the utility of open data by training an artificial intelligence model to assess cardiopulmonary resuscitation skills.

Advances in health sciences education : theory and practice
Health professional education stands to gain substantially from collective efforts toward building video databases of skill performances in both real and simulated settings. An accessible resource of videos that demonstrate an array of performances -...

Enhancing early Parkinson's disease detection through multimodal deep learning and explainable AI: insights from the PPMI database.

Scientific reports
Parkinson's is the second most common neurodegenerative disease, affecting nearly 8.5M people and steadily increasing. In this research, Multimodal Deep Learning is investigated for the Prodromal stage detection of Parkinson's Disease (PD), combining...

A machine learning model for early diagnosis of type 1 Gaucher disease using real-life data.

Journal of clinical epidemiology
OBJECTIVE: The diagnosis of Gaucher disease (GD) presents a major challenge due to the high variability and low specificity of its clinical characteristics, along with limited physician awareness of the disease's early symptoms. Early and accurate di...

A Combined CNN Architecture for Speech Emotion Recognition.

Sensors (Basel, Switzerland)
Emotion recognition through speech is a technique employed in various scenarios of Human-Computer Interaction (HCI). Existing approaches have achieved significant results; however, limitations persist, with the quantity and diversity of data being mo...

Predicting Mortality in Sepsis-Associated Acute Respiratory Distress Syndrome: A Machine Learning Approach Using the MIMIC-III Database.

Journal of intensive care medicine
BackgroundTo develop and validate a mortality prediction model for patients with sepsis-associated Acute Respiratory Distress Syndrome (ARDS).MethodsThis retrospective cohort study included 2466 patients diagnosed with sepsis and ARDS within 24 h of ...

Brain tumor detection and segmentation using deep learning.

Magma (New York, N.Y.)
OBJECTIVES: Brain tumor detection, classification and segmentation are challenging due to the heterogeneous nature of brain tumors. Different deep learning-based algorithms are available for object detection; however, the performance of detection alg...

A machine learning-based prediction of hospital mortality in mechanically ventilated ICU patients.

PloS one
BACKGROUND: Mechanical ventilation (MV) is vital for critically ill ICU patients but carries significant mortality risks. This study aims to develop a predictive model to estimate hospital mortality among MV patients, utilizing comprehensive health d...