AIMC Topic: Deep Learning

Clear Filters Showing 1421 to 1430 of 26474 articles

Deep Learning-Based Electrocardiogram Model (EIANet) to Predict Emergency Department Cardiac Arrest: Development and External Validation Study.

Journal of medical Internet research
BACKGROUND: In-hospital cardiac arrest (IHCA) is a severe and sudden medical emergency that is characterized by the abrupt cessation of circulatory function, leading to death or irreversible organ damage if not addressed immediately. Emergency depart...

Preoperative diagnosis of meningioma sinus invasion based on MRI radiomics and deep learning: a multicenter study.

Cancer imaging : the official publication of the International Cancer Imaging Society
OBJECTIVE: Exploring the construction of a fusion model that combines radiomics and deep learning (DL) features is of great significance for the precise preoperative diagnosis of meningioma sinus invasion.

Integrating convolutional layers and biformer network with forward-forward and backpropagation training.

Scientific reports
Accurate molecular property prediction is crucial for drug discovery and computational chemistry, facilitating the identification of promising compounds and accelerating therapeutic development. Traditional machine learning falters with high-dimensio...

CatPred: a comprehensive framework for deep learning in vitro enzyme kinetic parameters.

Nature communications
Estimation of enzymatic activities still heavily relies on experimental assays, which can be cost and time-intensive. We present CatPred, a deep learning framework for predicting in vitro enzyme kinetic parameters, including turnover numbers (k), Mic...

GBCHV an advanced deep learning anatomy aware model for accurate classification of gallbladder cancer utilizing ultrasound images.

Scientific reports
This study introduces a novel deep learning approach aimed at accurately classifying Gallbladder Cancer (GBC) into benign, malignant, and normal categories using ultrasound images from the challenging GBC USG (GBCU) dataset. The proposed methodology ...

Deep Ensemble for Central Serous Microscopic Retinopathy Detection in Retinal Optical Coherence Tomographic Images.

Microscopy research and technique
The retina is an important part of the eye that aids in focusing light and visual recognition to the brain. Hence, its damage causes vision loss in the human eye. Central serous retinopathy is a common retinal disorder in which serous detachment occu...

Enhancing atrial fibrillation detection in PPG analysis with sparse labels through contrastive learning.

Computer methods and programs in biomedicine
BACKGROUND: With the advancements in wearable technology, photoplethysmography (PPG) has emerged as a promising technique for detecting atrial fibrillation (AF) due to its ability to capture cardiovascular information. However, current deep learning-...

ScreenDx, an artificial intelligence-based algorithm for the incidental detection of pulmonary fibrosis.

The American journal of the medical sciences
BACKGROUND: Nonspecific symptoms and variability in radiographic reporting patterns contribute to a diagnostic delay of the diagnosis of pulmonary fibrosis. An attractive solution is the use of machine-learning algorithms to screen for radiographic f...

Artificial intelligence-enabled lipid droplets quantification: Comparative analysis of NIS-elements Segment.ai and ZeroCostDL4Mic StarDist networks.

Methods (San Diego, Calif.)
Lipid droplets (LDs) are dynamic organelles that are present in almost all cell types, with a particularly high prevalence in adipocytes. The phenotype of LDs in these cells reflects their maturity, metabolic activity and function. Although LDs quant...

Deep learning-driven prediction in healthcare systems: Applying advanced CNNs for enhanced breast cancer detection.

Computers in biology and medicine
The mortality risk associated with breast cancer is experiencing an exponential rise, underscoring the critical importance of early detection. It is the primary cause of mortality among women under 50 and ranks as the second deadliest disease globall...