AIMC Topic: Diabetic Nephropathies

Clear Filters Showing 11 to 20 of 78 articles

Machine learning algorithms for diabetic kidney disease risk predictive model of Chinese patients with type 2 diabetes mellitus.

Renal failure
BACKGROUND: Diabetic kidney disease (DKD) is a common and serious complication of diabetic mellitus (DM). More sensitive methods for early DKD prediction are urgently needed. This study aimed to set up DKD risk prediction models based on machine lear...

Identification of biomarkers related to iron death in diabetic kidney disease based on machine learning algorithms.

Annals of human biology
BACKGROUND: While ferroptosis has been recognised for its key role in tumour development, its involvement in DKD is not well understood. Identifying differentially expressed ferroptosis-related genes (DEIRGs) could help improve early diagnosis and tr...

Machine-learning assisted discovery unveils novel interplay between gut microbiota and host metabolic disturbance in diabetic kidney disease.

Gut microbes
Diabetic kidney disease (DKD) is a serious healthcare dilemma. Nonetheless, the interplay between the functional capacity of gut microbiota and their host remains elusive for DKD. This study aims to elucidate the functional capability of gut microbio...

Machine learning-based risk predictive models for diabetic kidney disease in type 2 diabetes mellitus patients: a systematic review and meta-analysis.

Frontiers in endocrinology
BACKGROUND: Machine learning (ML) models are being increasingly employed to predict the risk of developing and progressing diabetic kidney disease (DKD) in patients with type 2 diabetes mellitus (T2DM). However, the performance of these models still ...

Identification and validation of glycolysis-related diagnostic signatures in diabetic nephropathy: a study based on integrative machine learning and single-cell sequence.

Frontiers in immunology
BACKGROUND: Diabetic nephropathy (DN) is a complication of systemic microvascular disease in diabetes mellitus. Abnormal glycolysis has emerged as a potential factor for chronic renal dysfunction in DN. The current lack of reliable predictive biomark...

Machine learning-driven Raman spectroscopy: A novel approach to lipid profiling in diabetic kidney disease.

Nanomedicine : nanotechnology, biology, and medicine
Diabetes mellitus is a chronic metabolic disease that increasingly affects people every year. It is known that with its progression and poor management, metabolic changes can lead to organ dysfunctions, including kidneys. The study aimed to combine R...

Uncovering glycolysis-driven molecular subtypes in diabetic nephropathy: a WGCNA and machine learning approach for diagnostic precision.

Biology direct
INTRODUCTION: Diabetic nephropathy (DN) is a common diabetes-related complication with unclear underlying pathological mechanisms. Although recent studies have linked glycolysis to various pathological states, its role in DN remains largely underexpl...

Exploring the subtle and novel renal pathological changes in diabetic nephropathy using clustering analysis with deep learning.

Scientific reports
To decrease the number of chronic kidney disease (CKD), early diagnosis of diabetic kidney disease is required. We performed invariant information clustering (IIC)-based clustering on glomerular images obtained from nephrectomized kidneys of patients...

Prognostic Features for Overall Survival in Male Diabetic Patients Undergoing Hemodialysis Using Elastic Net Penalized Cox Regression; A Machine Learning Approach.

Archives of Iranian medicine
BACKGROUND: Diabetics constitute a significant percentage of hemodialysis (HD) patients with higher mortality, especially among male patients. A machine learning algorithm was used to optimize the prediction of time to death in male diabetic hemodial...

An arterial spin labeling-based radiomics signature and machine learning for the prediction and detection of various stages of kidney damage due to diabetes.

Frontiers in endocrinology
OBJECTIVE: The aim of this study was to assess the predictive capabilities of a radiomics signature obtained from arterial spin labeling (ASL) imaging in forecasting and detecting stages of kidney damage in patients with diabetes mellitus (DM), as we...