OBJECTIVE: Vagus nerve stimulation (VNS) is a common treatment for medically intractable epilepsy, but response rates are highly variable, with no preoperative means of identifying good candidates. This study aimed to predict VNS response using struc...
OBJECTIVE: Sudden unexpected death in epilepsy (SUDEP) is an important cause of mortality in epilepsy. However, there is a gap in how often providers counsel patients about SUDEP. One potential solution is to electronically prompt clinicians to provi...
OBJECTIVE The aim of this study was to compare the accuracy of optical frameless neuronavigation (ON) and robot-assisted (RA) stereoelectroencephalography (SEEG) electrode placement in children, and to identify factors that might increase the risk of...
BACKGROUND: Stereoelectroencephalography (SEEG) is an effective technique to help to locate and to delimit the epileptogenic area and/or to define relationships with functional cortical areas. We intend to describe the surgical technique and verify t...
Patients with drug-resistant epilepsy (DRE) are at high risk of morbidity and mortality, yet their referral to specialist care is frequently delayed. The ability to identify patients at high risk of DRE at the time of treatment initiation, and to sub...
Epilepsy is a neurological disorder affecting 50 million individuals globally. Modern research has inspected the likelihood of forecasting epileptic seizures. Algorithmic investigations are giving promising results for seizure prediction. Though most...
The objective of this study was to introduce a new machine learning guided by outcome of resective epilepsy surgery defined as the presence/absence of seizures to improve data mining for interictal pathological activities in neocortical epilepsy. Ele...
Human epilepsy patients suffer from spontaneous seizures, which originate in brain regions that also subserve normal function. Prior studies demonstrate focal, neocortical epilepsy is associated with dysfunction, several hours before seizures. How do...
OBJECTIVE Providing a reliable assessment of language lateralization is an important task to be performed prior to neurosurgery in patients with epilepsy. Over the last decade, functional MRI (fMRI) has emerged as a useful noninvasive tool for langua...
BACKGROUND: Machine learning models have been successfully applied to neuroimaging data to make predictions about behavioral and cognitive states of interest. While these multivariate methods have greatly advanced the field of neuroimaging, their app...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.