AIMC Topic: Environmental Pollutants

Clear Filters Showing 11 to 20 of 109 articles

Explainable no-code OECD-compliant machine learning models to predict the mutagenic activity of polycyclic aromatic hydrocarbons and their radical cation metabolites.

The Science of the total environment
Polycyclic aromatic hydrocarbons (PAHs) are persistent pollutants with well-known genotoxic and mutagenic effects, posing risks to ecosystems and human health. Their hydrophobic nature promotes accumulation in soils and aquatic environments, increasi...

Unveiling the effect of urinary xenoestrogens on chronic kidney disease in adults: A machine learning model.

Ecotoxicology and environmental safety
Exposure to three primary xenoestrogens (XEs), including phthalates, parabens, and phenols, has been strongly associated with chronic kidney disease (CKD). An interpretable machine learning (ML) model was developed to predict CKD using data from the ...

The Mechanism of Bisphenol S-Induced Atherosclerosis Elucidated Based on Network Toxicology, Molecular Docking, and Machine Learning.

Journal of applied toxicology : JAT
The increasing prevalence of environmental pollutants has raised public concern about their potential role in diseases such as atherosclerosis (AS). Existing studies suggest that chemicals, including bisphenol S (BPS), may adversely affect cardiovasc...

PBScreen: A server for the high-throughput screening of placental barrier-permeable contaminants based on multifusion deep learning.

Environmental pollution (Barking, Essex : 1987)
Contaminants capable of crossing the placental barrier (PB) adversely affect female reproduction and fetal development. The rapid identification of PB-permeable contaminants is urgently needed due to the inefficiencies of conventional cell-based tran...

Screening of estrogen receptor activity of per- and polyfluoroalkyl substances based on deep learning and in vivo assessment.

Environmental pollution (Barking, Essex : 1987)
Over the past decades, exposure to per- and polyfluoroalkyl substances (PFAS), a group of synthetic chemicals notorious for their environmental persistence, has been shown to pose increased health risks. Despite that some PFAS were reported to have e...

Web server-based deep learning-driven predictive models for respiratory toxicity of environmental chemicals: Mechanistic insights and interpretability.

Journal of hazardous materials
Respiratory toxicity of chemicals is a common clinical and environmental health concern. Currently, most in silico prediction models for chemical respiratory toxicity are often based on a single or vague toxicity endpoint, and machine learning models...

Untargeted metabolomics and machine learning unveil the exposome and metabolism linked with the risk of early pregnancy loss.

Journal of hazardous materials
Early pregnancy loss (EPL) may result from exposure to emerging contaminants (ECs), although the underlying mechanisms remain poorly understood. This case-control study measured over 2000 serum features, including 37 ECs, 6 biochemicals, and 2057 end...

Advancing micro-nano supramolecular assembly mechanisms of natural organic matter by machine learning for unveiling environmental geochemical processes.

Environmental science. Processes & impacts
The nano-self-assembly of natural organic matter (NOM) profoundly influences the occurrence and fate of NOM and pollutants in large-scale complex environments. Machine learning (ML) offers a promising and robust tool for interpreting and predicting t...

Exposure experiments and machine learning revealed that personal care products can significantly increase transdermal exposure of SVOCs from the environment.

Journal of hazardous materials
We investigated the impacts of personal care products (PCPs) on dermal exposure to semi-volatile organic compounds (SVOCs), including phthalates, organophosphate esters, polycyclic aromatic hydrocarbons (PAHs), ultraviolet filters, and p-phenylenedia...

Prediction of p-phenylenediamine antioxidant concentrations in human urine using machine learning models.

Journal of hazardous materials
p-phenylenediamine antioxidants (PPDs) are extensively used in rubber manufacturing for their potent antioxidative properties, but PPDs and 2-anilino-5-[(4-methylpentan-2yl)amino]cyclohexa-2,5-diene-1,4-dione (6PPDQ) pose potential environmental and ...