AIMC Topic: ErbB Receptors

Clear Filters Showing 21 to 30 of 87 articles

Integrating anoikis and ErbB signaling insights with machine learning and single-cell analysis for predicting prognosis and immune-targeted therapy outcomes in hepatocellular carcinoma.

Frontiers in immunology
BACKGROUND: Hepatocellular carcinoma (HCC) poses a significant global health challenge due to its poor prognosis and limited therapeutic modalities. Anoikis and ErbB signaling pathways are pivotal in cancer cell proliferation and metastasis, but thei...

Comprehensive Potential of Artificial Intelligence for Predicting PD-L1 Expression and EGFR Mutations in Lung Cancer: A Systematic Review and Meta-Analysis.

Journal of computer assisted tomography
OBJECTIVE: To evaluate the methodological quality and the predictive performance of artificial intelligence (AI) for predicting programmed death ligand 1 (PD-L1) expression and epidermal growth factor receptors (EGFR) mutations in lung cancer (LC) ba...

Habitat radiomics and deep learning fusion nomogram to predict EGFR mutation status in stage I non-small cell lung cancer: a multicenter study.

Scientific reports
Develop a radiomics nomogram that integrates deep learning, radiomics, and clinical variables to predict epidermal growth factor receptor (EGFR) mutation status in patients with stage I non-small cell lung cancer (NSCLC). We retrospectively included ...

Prediction of Epidermal Growth Factor Receptor Mutation Subtypes in Non-Small Cell Lung Cancer From Hematoxylin and Eosin-Stained Slides Using Deep Learning.

Laboratory investigation; a journal of technical methods and pathology
Accurate assessment of epidermal growth factor receptor (EGFR) mutation status and subtype is critical for the treatment of non-small cell lung cancer patients. Conventional molecular testing methods for detecting EGFR mutations have limitations. In ...

GMILT: A Novel Transformer Network That Can Noninvasively Predict EGFR Mutation Status.

IEEE transactions on neural networks and learning systems
Noninvasively and accurately predicting the epidermal growth factor receptor (EGFR) mutation status is a clinically vital problem. Moreover, further identifying the most suspicious area related to the EGFR mutation status can guide the biopsy to avoi...

Accuracy of machine learning in preoperative identification of genetic mutation status in lung cancer: A systematic review and meta-analysis.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND AND PURPOSE: We performed this systematic review and meta-analysis to investigate the performance of ML in detecting genetic mutation status in NSCLC patients.

GraphEGFR: Multi-task and transfer learning based on molecular graph attention mechanism and fingerprints improving inhibitor bioactivity prediction for EGFR family proteins on data scarcity.

Journal of computational chemistry
The proteins within the human epidermal growth factor receptor (EGFR) family, members of the tyrosine kinase receptor family, play a pivotal role in the molecular mechanisms driving the development of various tumors. Tyrosine kinase inhibitors, key c...

Real-World Outcomes of Patients with Advanced Epidermal Growth Factor Receptor-Mutated Non-Small Cell Lung Cancer in Canada Using Data Extracted by Large Language Model-Based Artificial Intelligence.

Current oncology (Toronto, Ont.)
Real-world evidence for patients with advanced -mutated non-small cell lung cancer (NSCLC) in Canada is limited. This study's objective was to use previously validated DARWEN artificial intelligence (AI) to extract data from electronic heath records ...