AIMC Topic: Graft Rejection

Clear Filters Showing 21 to 30 of 59 articles

Deep learning-enabled assessment of cardiac allograft rejection from endomyocardial biopsies.

Nature medicine
Endomyocardial biopsy (EMB) screening represents the standard of care for detecting allograft rejections after heart transplant. Manual interpretation of EMBs is affected by substantial interobserver and intraobserver variability, which often leads t...

Deep learning-based classification of kidney transplant pathology: a retrospective, multicentre, proof-of-concept study.

The Lancet. Digital health
BACKGROUND: Histopathological assessment of transplant biopsies is currently the standard method to diagnose allograft rejection and can help guide patient management, but it is one of the most challenging areas of pathology, requiring considerable e...

Deep learning identified pathological abnormalities predictive of graft loss in kidney transplant biopsies.

Kidney international
Interstitial fibrosis, tubular atrophy, and inflammation are major contributors to kidney allograft failure. Here we sought an objective, quantitative pathological assessment of these lesions to improve predictive utility and constructed a deep-learn...

Early Projection of Kidney Allograft Rejection Through Deep Learning: A Way Forward.

Experimental and clinical transplantation : official journal of the Middle East Society for Organ Transplantation

Patterns of 1,748 Unique Human Alloimmune Responses Seen by Simple Machine Learning Algorithms.

Frontiers in immunology
Allele specific antibody response against the polymorphic system of HLA is the allogeneic response marker determining the immunological risk for graft acceptance before and after organ transplantation and therefore routinely studied during the patien...

Using Artificial Intelligence Resources in Dialysis and Kidney Transplant Patients: A Literature Review.

BioMed research international
BACKGROUND: The purpose of this review is to depict current research and impact of artificial intelligence/machine learning (AI/ML) algorithms on dialysis and kidney transplantation. Published studies were presented from two points of view: What medi...

Automated detection algorithm for C4d immunostaining showed comparable diagnostic performance to pathologists in renal allograft biopsy.

Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
A deep learning-based image analysis could improve diagnostic accuracy and efficiency in pathology work. Recently, we proposed a deep learning-based detection algorithm for C4d immunostaining in renal allografts. The objective of this study is to ass...

Using machine learning techniques to develop risk prediction models to predict graft failure following kidney transplantation: protocol for a retrospective cohort study.

F1000Research
A mechanism to predict graft failure before the actual kidney transplantation occurs is crucial to clinical management of chronic kidney disease patients.  Several kidney graft outcome prediction models, developed using machine learning methods, are...

Machine learning in predicting graft failure following kidney transplantation: A systematic review of published predictive models.

International journal of medical informatics
INTRODUCTION: Machine learning has been increasingly used to develop predictive models to diagnose different disease conditions. The heterogeneity of the kidney transplant population makes predicting graft outcomes extremely challenging. Several kidn...