AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Head and Neck Neoplasms

Showing 51 to 60 of 323 articles

Clear Filters

Automated tumor localization and segmentation through hybrid neural network in head and neck cancer.

Medical dosimetry : official journal of the American Association of Medical Dosimetrists
PURPOSE: Head and Neck (H&N) cancer accounts for 3% of cancer cases in the United States. Precise tumor segmentation in H&N is of utmost importance for treatment planning and administering personalized treatment dose. We aimed to develop an automatic...

Deep learning-based statistical robustness evaluation of intensity-modulated proton therapy for head and neck cancer.

Physics in medicine and biology
. Previous methods for robustness evaluation rely on dose calculation for a number of uncertainty scenarios, which either fails to provide statistical meaning when the number is too small (e.g., ∼8) or becomes unfeasible in daily clinical practice wh...

Evaluation of deep learning based dose prediction in head and neck cancer patients using two different types of input contours.

Journal of applied clinical medical physics
PURPOSE: This study evaluates deep learning (DL) based dose prediction methods in head and neck cancer (HNC) patients using two types of input contours.

Machine Learning in Clinical Diagnosis of Head and Neck Cancer.

Clinical otolaryngology : official journal of ENT-UK ; official journal of Netherlands Society for Oto-Rhino-Laryngology & Cervico-Facial Surgery
OBJECTIVE: Machine learning has been effective in other areas of medicine, this study aims to investigate this with regards to HNC and identify which algorithm works best to classify malignant patients.

Assessing the Reporting Quality of Machine Learning Algorithms in Head and Neck Oncology.

The Laryngoscope
OBJECTIVE: This study aimed to assess reporting quality of machine learning (ML) algorithms in the head and neck oncology literature using the TRIPOD-AI criteria.

Contrast-Enhanced Computed Tomography-Based Machine Learning Radiomics Predicts IDH1 Expression and Clinical Prognosis in Head and Neck Squamous Cell Carcinoma.

Academic radiology
RATIONALE AND OBJECTIVES: Isocitrate dehydrogenase 1 (IDH1) is a potential therapeutic target across various tumor types. Here, we aimed to devise a radiomic model capable of predicting the IDH1 expression levels in patients with head and neck squamo...

Development of a novel prognostic signature derived from super-enhancer-associated gene by machine learning in head and neck squamous cell carcinoma.

Oral oncology
Dysregulated super-enhancer (SE) results in aberrant transcription that drives cancer initiation and progression. SEs have been demonstrated as novel promising diagnostic/prognostic biomarkers and therapeutic targets across multiple human cancers. He...

The utility and reliability of a deep learning algorithm as a diagnosis support tool in head & neck non-melanoma skin malignancies.

European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery
OBJECTIVE: The incidence of non-melanoma skin cancers, encompassing basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC), is on the rise globally and new methods to improve skin malignancy diagnosis are necessary. This study aims t...

Artificial Intelligence in Head and Neck Cancer: Innovations, Applications, and Future Directions.

Current oncology (Toronto, Ont.)
Artificial intelligence (AI) is revolutionizing head and neck cancer (HNC) care by providing innovative tools that enhance diagnostic accuracy and personalize treatment strategies. This review highlights the advancements in AI technologies, including...

Deep learning with uncertainty estimation for automatic tumor segmentation in PET/CT of head and neck cancers: impact of model complexity, image processing and augmentation.

Biomedical physics & engineering express
Target volumes for radiotherapy are usually contoured manually, which can be time-consuming and prone to inter- and intra-observer variability. Automatic contouring by convolutional neural networks (CNN) can be fast and consistent but may produce unr...