AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

High-Throughput Nucleotide Sequencing

Showing 31 to 40 of 301 articles

Clear Filters

RNAVirHost: a machine learning-based method for predicting hosts of RNA viruses through viral genomes.

GigaScience
BACKGROUND: The high-throughput sequencing technologies have revolutionized the identification of novel RNA viruses. Given that viruses are infectious agents, identifying hosts of these new viruses carries significant implications for public health a...

Highly accurate classification and discovery of microbial protein-coding gene functions using FunGeneTyper: an extensible deep learning framework.

Briefings in bioinformatics
High-throughput DNA sequencing technologies decode tremendous amounts of microbial protein-coding gene sequences. However, accurately assigning protein functions to novel gene sequences remain a challenge. To this end, we developed FunGeneTyper, an e...

Machine Learning-Based Etiologic Subtyping of Ischemic Stroke Using Circulating Exosomal microRNAs.

International journal of molecular sciences
Ischemic stroke is a major cause of mortality worldwide. Proper etiological subtyping of ischemic stroke is crucial for tailoring treatment strategies. This study explored the utility of circulating microRNAs encapsulated in extracellular vesicles (E...

Machine Learning-Assisted Direct RNA Sequencing with Epigenetic RNA Modification Detection via Quantum Tunneling.

Analytical chemistry
RNA sequence information holds immense potential as a drug target for diagnosing various RNA-mediated diseases and viral/bacterial infections. Massively parallel complementary DNA (c-DNA) sequencing helps but results in a loss of valuable information...

Detection of disease-specific signatures in B cell repertoires of lymphomas using machine learning.

PLoS computational biology
The classification of B cell lymphomas-mainly based on light microscopy evaluation by a pathologist-requires many years of training. Since the B cell receptor (BCR) of the lymphoma clonotype and the microenvironmental immune architecture are importan...

A review on advancements in feature selection and feature extraction for high-dimensional NGS data analysis.

Functional & integrative genomics
Recent advancements in biomedical technologies and the proliferation of high-dimensional Next Generation Sequencing (NGS) datasets have led to significant growth in the bulk and density of data. The NGS high-dimensional data, characterized by a large...

Utilizing Deep Neural Networks to Fill Gaps in Small Genomes.

International journal of molecular sciences
With the widespread adoption of next-generation sequencing technologies, the speed and convenience of genome sequencing have significantly improved, and many biological genomes have been sequenced. However, during the assembly of small genomes, we st...

Enhancing novel isoform discovery: leveraging nanopore long-read sequencing and machine learning approaches.

Briefings in functional genomics
Long-read sequencing technologies can capture entire RNA transcripts in a single sequencing read, reducing the ambiguity in constructing and quantifying transcript models in comparison to more common and earlier methods, such as short-read sequencing...

High-Risk Sequence Prediction Model in DNA Storage: The LQSF Method.

IEEE transactions on nanobioscience
Traditional DNA storage technologies rely on passive filtering methods for error correction during synthesis and sequencing, which result in redundancy and inadequate error correction. Addressing this, the Low Quality Sequence Filter (LQSF) was intro...