AIMC Topic: Hospitalization

Clear Filters Showing 121 to 130 of 498 articles

Artificial Intelligence Predicts Hospitalization for Acute Heart Failure Exacerbation in Patients Undergoing Myocardial Perfusion Imaging.

Journal of nuclear medicine : official publication, Society of Nuclear Medicine
Heart failure (HF) is a leading cause of morbidity and mortality in the United States and worldwide, with a high associated economic burden. This study aimed to assess whether artificial intelligence models incorporating clinical, stress test, and im...

Predicting clinical outcomes of SARS-CoV-2 infection during the Omicron wave using machine learning.

PloS one
The Omicron SARS-CoV-2 variant continues to strain healthcare systems. Developing tools that facilitate the identification of patients at highest risk of adverse outcomes is a priority. The study objectives are to develop population-scale predictive ...

Predicting in-hospital mortality among patients admitted with a diagnosis of heart failure: a machine learning approach.

ESC heart failure
Existing risk prediction models for hospitalized heart failure patients are limited. We identified patients hospitalized with a diagnosis of heart failure between 7 May 2013 and 26 April 2022 from a large academic, quaternary care medical centre (tra...

Exploring the intersection of obesity and gender in COVID-19 outcomes in hospitalized Mexican patients: a comparative analysis of risk profiles using unsupervised machine learning.

Frontiers in public health
INTRODUCTION: Obesity and gender play a critical role in shaping the outcomes of COVID-19 disease. These two factors have a dynamic relationship with each other, as well as other risk factors, which hinders interpretation of how they influence severi...

Predictive modeling of deep vein thrombosis risk in hospitalized patients: A Q-learning enhanced feature selection model.

Computers in biology and medicine
Deep vein thrombosis (DVT) represents a critical health concern due to its potential to lead to pulmonary embolism, a life-threatening complication. Early identification and prediction of DVT are crucial to prevent thromboembolic events and implement...

ROBot-assisted physical training of older patients during acUte hospitaliSaTion-study protocol for a randomised controlled trial (ROBUST).

Trials
BACKGROUND: During hospitalisation, older patients spend most of their time passive in bed, which increases the risk of functional decline and negative adverse outcomes. Our aim is to examine the impact of robot-assisted physical training on function...

Social robotics as an adjuvant during the hospitalization process in pediatric oncology patients.

Journal of psychosocial oncology
OBJECTIVE: To describe the experience of implementing social robotics as an adjuvant during the hospitalization process in pediatric oncology patients.

Using machine learning models to predict falls in hospitalised adults.

International journal of medical informatics
BACKGROUND: Identifying patients at high risk of falling is crucial in implementing effective fall prevention programs. While the integration of information systems is becoming more widespread in the healthcare industry, it poses a significant challe...