AIMC Topic: Incidence

Clear Filters Showing 41 to 50 of 356 articles

Postoperative fever following surgery for oral cancer: Incidence, risk factors, and the formulation of a machine learning-based predictive model.

BMC oral health
BACKGROUND: Postoperative fever (POF) is a common occurrence in patients undergoing major surgery, presenting challenges and burdens for both patients and surgeons yet. This study endeavors to examine the incidence, identify risk factors, and establi...

The feasibility of using machine learning to predict COVID-19 cases.

International journal of medical informatics
BACKGROUND: Coronavirus Disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, emerged as a global health crisis in 2019, resulting in widespread morbidity and mortality. A persistent challenge during the pandemic has been the accuracy of reported ...

Ensemble machine learning models for lung cancer incidence risk prediction in the elderly: a retrospective longitudinal study.

BMC cancer
BACKGROUND: Identifying high risk factors and predicting lung cancer incidence risk are essential to prevention and intervention of lung cancer for the elderly. We aim to develop lung cancer incidence risk prediction model in the elderly to facilitat...

Machine learning-based prediction for incidence of endoscopic retrograde cholangiopancreatography after emergency laparoscopic cholecystectomy: A retrospective, multicenter cohort study.

Surgical endoscopy
BACKGROUND: Laparoscopic cholecystectomy is the preferred treatment for symptomatic cholelithiasis and acute cholecystitis, with increasing applications even in severe cases. However, the possibility of postoperative endoscopic retrograde cholangiopa...

Machine learning and spatio-temporal analysis of meteorological factors on waterborne diseases in Bangladesh.

PLoS neglected tropical diseases
BACKGROUND: Bangladesh is facing a formidable challenge in mitigating waterborne diseases risk exacerbated by climate change. However, a comprehensive understanding of the spatio-temporal dynamics of these diseases at the district level remains elusi...

Spatio-temporal risk prediction of leptospirosis: A machine-learning-based approach.

PLoS neglected tropical diseases
BACKGROUND: Leptospirosis is a neglected zoonotic disease prevalent worldwide, particularly in tropical regions experiencing frequent rainfall and severe cyclones, which are further aggravated by climate change. This bacterial zoonosis, caused by the...

Comparison of the spatial and temporal distribution of cutaneous and mucosal leishmaniasis in the state of Rio de Janeiro between 2001 and 2011.

PloS one
OBJECTIVE: To compare the spatio-temporal distribution of cutaneous leishmaniasis (CL) cases with mucosal leishmaniasis (ML) cases in the state of Rio de Janeiro (RJ) between 2001 and 2011.

Machine learning mathematical models for incidence estimation during pandemics.

PLoS computational biology
Accurate estimates of the incidence of infectious diseases are key for the control of epidemics. However, healthcare systems are often unable to test the population exhaustively, especially when asymptomatic and paucisymptomatic cases are widespread;...