AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Intubation, Intratracheal

Showing 31 to 40 of 50 articles

Clear Filters

Automated Assessment System for Neonatal Endotracheal Intubation Using Dilated Convolutional Neural Network.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Neonatal endotracheal intubation (ETI) is an important, complex resuscitation skill, which requires a significant amount of practice to master. Current ETI practice is conducted on the physical manikin and relies on the expert instructors' assessment...

Comparative Analysis on Machine Learning and Deep Learning to Predict Post-Induction Hypotension.

Sensors (Basel, Switzerland)
Hypotensive events in the initial stage of anesthesia can cause serious complications in the patients after surgery, which could be fatal. In this study, we intended to predict hypotension after tracheal intubation using machine learning and deep lea...

Machine Learning in Laryngoscopy Analysis: A Proof of Concept Observational Study for the Identification of Post-Extubation Ulcerations and Granulomas.

The Annals of otology, rhinology, and laryngology
OBJECTIVE: Computer-aided analysis of laryngoscopy images has potential to add objectivity to subjective evaluations. Automated classification of biomedical images is extremely challenging due to the precision required and the limited amount of annot...

Adding Continuous Vital Sign Information to Static Clinical Data Improves the Prediction of Length of Stay After Intubation: A Data-Driven Machine Learning Approach.

Respiratory care
BACKGROUND: Bedside monitors in the ICU routinely measure and collect patients' physiologic data in real time to continuously assess the health status of patients who are critically ill. With the advent of increased computational power and the abilit...

Development and Prospective Validation of a Deep Learning Algorithm for Predicting Need for Mechanical Ventilation.

Chest
BACKGROUND: Objective and early identification of hospitalized patients, and particularly those with novel coronavirus disease 2019 (COVID-19), who may require mechanical ventilation (MV) may aid in delivering timely treatment.

Predicting the need for intubation in the first 24 h after critical care admission using machine learning approaches.

Scientific reports
Early and accurate prediction of the need for intubation may provide more time for preparation and increase safety margins by avoiding high risk late intubation. This study evaluates whether machine learning can predict the need for intubation within...

A Machine Learning Prediction Model of Respiratory Failure Within 48 Hours of Patient Admission for COVID-19: Model Development and Validation.

Journal of medical Internet research
BACKGROUND: Predicting early respiratory failure due to COVID-19 can help triage patients to higher levels of care, allocate scarce resources, and reduce morbidity and mortality by appropriately monitoring and treating the patients at greatest risk f...