AIMC Topic: Kidney Neoplasms

Clear Filters Showing 31 to 40 of 487 articles

Leveraging explainable AI and large-scale datasets for comprehensive classification of renal histologic types.

Scientific reports
Recently, as the number of cancer patients has increased, much research is being conducted for efficient treatment, including the use of artificial intelligence in genitourinary pathology. Recent research has focused largely on the classification of ...

Interpretable CT Radiomics-based Machine Learning Model for Preoperative Prediction of Ki-67 Expression in Clear Cell Renal Cell Carcinoma.

Academic radiology
RATIONALE AND OBJECTIVES: To develop and externally validate interpretable CT radiomics-based machine learning (ML) models for preoperative Ki-67 expression prediction in clear cell renal cell carcinoma (ccRCC).

Dual-Stage AI Model for Enhanced CT Imaging: Precision Segmentation of Kidney and Tumors.

Tomography (Ann Arbor, Mich.)
OBJECTIVES: Accurate kidney and tumor segmentation of computed tomography (CT) scans is vital for diagnosis and treatment, but manual methods are time-consuming and inconsistent, highlighting the value of AI automation. This study develops a fully au...

Machine learning models predict the progression of long-term renal insufficiency in patients with renal cancer after radical nephrectomy.

BMC nephrology
BACKGROUND: Chronic Kidney Disease (CKD) is a common severe complication after radical nephrectomy in patients with renal cancer. The timely and accurate prediction of the long-term progression of renal function post-surgery is crucial for early inte...

Deep learning-based prediction of tumor aggressiveness in RCC using multiparametric MRI: a pilot study.

International urology and nephrology
OBJECTIVE: To investigate the value of multiparametric magnetic resonance imaging (MRI) as a non-invasive method to predict the aggressiveness of renal cell carcinoma (RCC) by developing a convolutional neural network (CNN) model and fusing it with c...

Development of a centrosome amplification-associated signature in kidney renal clear cell carcinoma based on multiple machine learning models.

Computational biology and chemistry
BACKGROUND: Centrosome amplification (CA) has been shown to be capable of initiating tumorigenesis with metastatic potential and enhancing cell invasion. We were interested in discovering how centrosome amplification-associated signature affects the ...

Radiomics for differential diagnosis of Bosniak II-IV renal masses via CT imaging.

BMC cancer
RATIONALE AND OBJECTIVES: The management of complex renal cysts is guided by the Bosniak classification system, which may be inadequate for risk stratification of patients to determine the appropriate intervention. Radiomics models based on CT imagin...

An Application of Machine-Learning-Oriented Radiomics Model in Clear Cell Renal Cell Carcinoma (ccRCC) Early Diagnosis.

British journal of hospital medicine (London, England : 2005)
Clear cell renal cell carcinoma (ccRCC) is a common and aggressive form of kidney cancer, where early diagnosis is crucial for improving prognosis and treatment outcomes. Radiomics, which utilizes machine learning techniques, presents a promising ap...

Impact of different nephrectomy types on M0 renal cell carcinoma outcomes in a propensity score matching and deep learning study.

Scientific reports
There are few analyses comparing complete nephrectomy with resection of the renal parenchyma only (CN) or radical nephrectomy that includes simultaneous resection of the parenchyma, affected perirenal fascia, perirenal fat, and ureter (RN) relative t...

A machine learning-based analysis for the definition of an optimal renal biopsy for kidney cancer.

Urologic oncology
OBJECTIVE: Renal Tumor biopsy (RTB) can assist clinicians in determining the most suitable approach for treatment of renal cancer. However, RTB's limitations in accurately determining histology and grading have hindered its broader adoption and data ...