AIMC Topic: Linkage Disequilibrium

Clear Filters Showing 11 to 20 of 21 articles

Improving genomic prediction accuracy for meat tenderness in Nellore cattle using artificial neural networks.

Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie
The goal of this study was to compare the predictive performance of artificial neural networks (ANNs) with Bayesian ridge regression, Bayesian Lasso, Bayes A, Bayes B and Bayes Cπ in estimating genomic breeding values for meat tenderness in Nellore c...

An unsupervised machine learning method for discovering patient clusters based on genetic signatures.

Journal of biomedical informatics
INTRODUCTION: Many chronic disorders have genomic etiology, disease progression, clinical presentation, and response to treatment that vary on a patient-to-patient basis. Such variability creates a need to identify characteristics within patient popu...

Methylomes Reveal Recent Evolutionary Changes in Populations of Two Plant Species.

Genome biology and evolution
Plant DNA methylation changes occur hundreds to thousands of times faster than DNA mutations and can be transmitted transgenerationally, making them useful for studying population-scale patterns in clonal or selfing species. However, a state-of-the-a...

DeepPerVar: a multi-modal deep learning framework for functional interpretation of genetic variants in personal genome.

Bioinformatics (Oxford, England)
MOTIVATION: Understanding the functional consequence of genetic variants, especially the non-coding ones, is important but particularly challenging. Genome-wide association studies (GWAS) or quantitative trait locus analyses may be subject to limited...

Deep learning model reveals potential risk genes for ADHD, especially Ephrin receptor gene EPHA5.

Briefings in bioinformatics
Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder. Although genome-wide association studies (GWAS) identify the risk ADHD-associated variants and genes with significant P-values, they may neglect the combined eff...

Revisiting genome-wide association studies from statistical modelling to machine learning.

Briefings in bioinformatics
Over the last decade, genome-wide association studies (GWAS) have discovered thousands of genetic variants underlying complex human diseases and agriculturally important traits. These findings have been utilized to dissect the biological basis of dis...

TAGOOS: genome-wide supervised learning of non-coding loci associated to complex phenotypes.

Nucleic acids research
Genome-wide association studies (GWAS) associate single nucleotide polymorphisms (SNPs) to complex phenotypes. Most human SNPs fall in non-coding regions and are likely regulatory SNPs, but linkage disequilibrium (LD) blocks make it difficult to dist...