AIMC Topic: Liver Neoplasms

Clear Filters Showing 31 to 40 of 757 articles

Construction of an artificially intelligent model for accurate detection of HCC by integrating clinical, radiological, and peripheral immunological features.

International journal of surgery (London, England)
BACKGROUND: Integrating comprehensive information on hepatocellular carcinoma (HCC) is essential to improve its early detection. We aimed to develop a model with multimodal features (MMF) using artificial intelligence (AI) approaches to enhance the p...

Gd-EOB-DTPA-enhanced MRI radiomics and deep learning models to predict microvascular invasion in hepatocellular carcinoma: a multicenter study.

BMC medical imaging
BACKGROUND: Microvascular invasion (MVI) is an important risk factor for early postoperative recurrence of hepatocellular carcinoma (HCC). Based on gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance ...

ResTransUNet: A hybrid CNN-transformer approach for liver and tumor segmentation in CT images.

Computers in biology and medicine
BACKGROUND AND OBJECTIVE: Accurate medical tumor segmentation is critical for early diagnosis and treatment planning, significantly improving patient outcomes. This study aims to enhance liver and tumor segmentation from CT and liver images by develo...

A prediction model based on machine learning: prognosis of HBV-induced HCC male patients with smoking and drinking habits after local ablation treatment.

Frontiers in immunology
BACKGROUND: Liver cancer, particularly hepatocellular carcinoma (HCC), is a major health concern globally and in China, possibly shows recurrence after ablation treatment in high-risk patients. This study investigates the prognosis of early-stage mal...

Deep Learning-Based Auto-Segmentation for Liver Yttrium-90 Selective Internal Radiation Therapy.

Technology in cancer research & treatment
The aim was to evaluate a deep learning-based auto-segmentation method for liver delineation in Y-90 selective internal radiation therapy (SIRT). A deep learning (DL)-based liver segmentation model using the U-Net3D architecture was built. Auto-segme...

LA-ResUNet: Attention-based network for longitudinal liver tumor segmentation from CT images.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Longitudinal liver tumor segmentation plays a fundamental role in studying and monitoring the progression of associated diseases. The correlation and differences between longitudinal data can further improve segmentation performance, which are inevit...

A Novel Visual Model for Predicting Prognosis of Resected Hepatoblastoma: A Multicenter Study.

Academic radiology
RATIONALE AND OBJECTIVES: This study aimed to evaluate the application of a contrast-enhanced CT-based visual model in predicting postoperative prognosis in patients with hepatoblastoma (HB).

Identification of CACNB1 protein as an actionable therapeutic target for hepatocellular carcinoma via metabolic dysfunction analysis in liver diseases: An integrated bioinformatics and machine learning approach for precise therapy.

International journal of biological macromolecules
In addition to histological evaluation for nonalcoholic fatty liver disease (NAFLD), a comprehensive analysis of the metabolic landscape is urgently needed to categorize patients into distinct subgroups for precise treatment. In this study, a total o...

A CT-based deep learning-driven tool for automatic liver tumor detection and delineation in patients with cancer.

Cell reports. Medicine
Liver tumors, whether primary or metastatic, significantly impact the outcomes of patients with cancer. Accurate identification and quantification are crucial for effective patient management, including precise diagnosis, prognosis, and therapy evalu...

Multitask learning model for predicting non-coding RNA-disease associations: Incorporating local and global context.

Methods (San Diego, Calif.)
Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are crucial non-coding RNAs involved in various diseases. Understanding these interactions is vital for advancing diagnostic, preventive, and therapeutic strategies. Existing computational methods...