AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Liver Neoplasms

Showing 31 to 40 of 714 articles

Clear Filters

A CT-based deep learning-driven tool for automatic liver tumor detection and delineation in patients with cancer.

Cell reports. Medicine
Liver tumors, whether primary or metastatic, significantly impact the outcomes of patients with cancer. Accurate identification and quantification are crucial for effective patient management, including precise diagnosis, prognosis, and therapy evalu...

Benchmarking ensemble machine learning algorithms for multi-class, multi-omics data integration in clinical outcome prediction.

Briefings in bioinformatics
The complementary information found in different modalities of patient data can aid in more accurate modelling of a patient's disease state and a better understanding of the underlying biological processes of a disease. However, the analysis of multi...

Predicting early recurrence of hepatocellular carcinoma after thermal ablation based on longitudinal MRI with a deep learning approach.

The oncologist
BACKGROUND: Accurate prediction of early recurrence (ER) is essential to improve the prognosis of patients with hepatocellular carcinoma (HCC) underwent thermal ablation (TA). Therefore, a deep learning model system using longitudinal magnetic resona...

Denoised recurrence label-based deep learning for prediction of postoperative recurrence risk and sorafenib response in HCC.

BMC medicine
BACKGROUND: Pathological images of hepatocellular carcinoma (HCC) contain abundant tumor information that can be used to stratify patients. However, the links between histology images and the treatment response have not been fully unveiled.

Deep learning based on intratumoral heterogeneity predicts histopathologic grade of hepatocellular carcinoma.

BMC cancer
OBJECTIVES: The potential of medical imaging to non-invasively assess intratumoral heterogeneity (ITH) is increasingly being recognized. This study aimed to investigate the value of the ITH-based deep learning model for preoperative prediction of his...

LI-RADS-based hepatocellular carcinoma risk mapping using contrast-enhanced MRI and self-configuring deep learning.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: Hepatocellular carcinoma (HCC) is often diagnosed using gadoxetate disodium-enhanced magnetic resonance imaging (EOB-MRI). Standardized reporting according to the Liver Imaging Reporting and Data System (LI-RADS) can improve Gd-MRI interp...

Deep Learning Radiopathomics Models Based on Contrast-enhanced MRI and Pathologic Imaging for Predicting Vessels Encapsulating Tumor Clusters and Prognosis in Hepatocellular Carcinoma.

Radiology. Imaging cancer
Purpose To develop deep learning (DL) radiopathomics models based on contrast-enhanced MRI and pathologic imaging to predict vessels encapsulating tumor clusters (VETC) and survival in hepatocellular carcinoma (HCC). Materials and Methods In this ret...

Deep learning for hepatocellular carcinoma recurrence before and after liver transplantation: a multicenter cohort study.

Scientific reports
Hepatocellular carcinoma (HCC) recurrence after liver transplantation (LT) is a major contributor to mortality. We developed a recurrence prediction system for HCC patients before and after LT. Data from patients with HCC who underwent LT were retros...