Proteins play important roles in living organisms, and their function is directly linked with their structure. Due to the growing gap between the number of proteins being discovered and their functional characterization (in particular as a result of ...
BACKGROUND: The use of machine learning (ML) algorithms to study suicidality has recently been recommended. Our aim was to explore whether ML approaches have the potential to improve the prediction of suicide attempt (SA) risk. Using the epidemiologi...
BMC medical informatics and decision making
Nov 12, 2019
BACKGROUND: The study aimed to assess the performance of a multidisciplinary-team diabetes care program called DIABETIMSS on glycemic control of type 2 diabetes (T2D) patients, by using available observational patient data and machine-learning-based ...
The accurate identification and prediction of high-cost Chronic obstructive pulmonary disease (COPD) patients is important for addressing the economic burden of COPD. The objectives of this study were to use machine learning approaches to identify an...
While machine learning approaches can enhance prediction ability, little is known about their ability to predict 30-day readmission after hospitalization for Chronic Obstructive Pulmonary Disease (COPD). We identified patients aged ≥40 years with unp...
International journal for numerical methods in biomedical engineering
Nov 10, 2019
Pulse feeling , representing the tactile arterial palpation of the heartbeat, has been widely used in traditional Chinese medicine (TCM) to diagnose various diseases. The quantitative relationship between the pulse wave and health conditions however ...
OBJECTIVES: This study aimed to develop non-invasive machine learning classifiers for predicting post-Glenn shunt patients with low and high risks of a mean pulmonary arterial pressure (mPAP) > 15 mmHg based on preoperative cardiac computed tomograph...
BMC medical informatics and decision making
Nov 8, 2019
BACKGROUND: Predictive modeling with longitudinal electronic health record (EHR) data offers great promise for accelerating personalized medicine and better informs clinical decision-making. Recently, deep learning models have achieved state-of-the-a...
This study evaluated prediction performance of three different machine learning (ML) techniques in predicting opioid misuse among U.S. adolescents. Data were drawn from the 2015-2017 National Survey on Drug Use and Health (N = 41,579 adolescents, age...
PURPOSE: To evaluate the performance of machine learning (ML)-based computed tomography (CT) radiomics analysis for discriminating between low grade (WHO/ISUP I-II) and high grade (WHO/ISUP III-IV) clear cell renal cell carcinomas (ccRCCs).