AIMC Topic: Lung Neoplasms

Clear Filters Showing 41 to 50 of 1613 articles

Artificial intelligence for early detection of lung cancer in GPs' clinical notes: a retrospective observational cohort study.

The British journal of general practice : the journal of the Royal College of General Practitioners
BACKGROUND: The journey of >80% of patients diagnosed with lung cancer starts in general practice. About 75% of patients are diagnosed when it is at an advanced stage (3 or 4), leading to >80% mortality within 1 year at present. The long-term data in...

Machine learning in prediction of epidermal growth factor receptor status in non-small cell lung cancer brain metastases: a systematic review and meta-analysis.

BMC cancer
BACKGROUND: Epidermal growth factor receptor (EGFR) mutations are present in 10-60% of all non-small cell lung cancer (NSCLC) patients and are associated with dismal prognosis. Lung cancer brain metastases (LCBM) are a common complication of lung can...

Predicting Gene Comutation of EGFR and TP53 by Radiomics and Deep Learning in Patients With Lung Adenocarcinomas.

Journal of thoracic imaging
PURPOSE: This study was designed to construct progressive binary classification models based on radiomics and deep learning to predict the presence of epidermal growth factor receptor ( EGFR ) and TP53 mutations and to assess the models' capacities t...

Deep learning radiopathomics predicts targeted therapy sensitivity in EGFR-mutant lung adenocarcinoma.

Journal of translational medicine
BACKGROUND: Ttyrosine kinase inhibitors (TKIs) represent the standard first-line treatment for patients with epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma. However, not all patients with EGFR mutations respond to TKIs. This study...

Development of an artificial intelligence powered software for automated analysis of skeletal muscle ultrasonography.

Scientific reports
Muscle ultrasound has high utility in clinical practice and research; however, the main challenges are the training and time required for manual analysis to achieve objective quantification of muscle size and quality. We aimed to develop and validate...

F-FDG PET/CT-based deep learning models and a clinical-metabolic nomogram for predicting high-grade patterns in lung adenocarcinoma.

BMC medical imaging
BACKGROUND: To develop and validate deep learning (DL) and traditional clinical-metabolic (CM) models based on 18 F-FDG PET/CT images for noninvasively predicting high-grade patterns (HGPs) of invasive lung adenocarcinoma (LUAD).

Comparison of dynamic mode decomposition with other data-driven models for lung cancer incidence rate prediction.

Frontiers in public health
INTRODUCTION: Public health data analysis is critical to understanding disease trends. Existing analysis methods struggle with the complexity of public health data, which includes both location and time factors. Machine learning offers powerful tools...

Analyzing factors influencing hospitalization costs for five common cancers in China using neural network models.

Journal of medical economics
BACKGROUND: Malignant tumors are a major global health crisis, causing 25% of deaths in China, with lung, liver, thyroid, breast, and colon cancers being the most common. Understanding the factors influencing hospitalization costs for these cancers i...

Unsupervised non-small cell lung cancer tumor segmentation using cycled generative adversarial network with similarity-based discriminator.

Journal of applied clinical medical physics
BACKGROUND: Tumor segmentation is crucial for lung disease diagnosis and treatment. Most existing deep learning-based automatic segmentation methods rely on manually annotated data for network training.