AIMC Topic: Magnetic Resonance Imaging

Clear Filters Showing 1001 to 1010 of 6485 articles

Modeling Functional Brain Networks for ADHD via Spatial Preservation-Based Neural Architecture Search.

IEEE journal of biomedical and health informatics
Modeling functional brain networks (FBNs) for attention deficit hyperactivity disorder (ADHD) has sparked significant interest since the abnormal functional connectivity is discovered in certain functional magnetic resonance imaging (fMRI)-based brai...

Multi-Loss Disentangled Generative-Discriminative Learning for Multimodal Representation in Schizophrenia.

IEEE journal of biomedical and health informatics
Schizophrenia (SCZ) is a multifactorial mental illness, thus it will be beneficial for exploring this disease using multimodal data, including functional magnetic resonance imaging (fMRI), genes, and the gut microbiome. Previous studies reported comb...

Anatomic Interpretability in Neuroimage Deep Learning: Saliency Approaches for Typical Aging and Traumatic Brain Injury.

Neuroinformatics
The black box nature of deep neural networks (DNNs) makes researchers and clinicians hesitant to rely on their findings. Saliency maps can enhance DNN explainability by suggesting the anatomic localization of relevant brain features. This study compa...

Development of a Dual-Plane MRI-Based Deep Learning Model to Assess the 1-Year Postoperative Outcomes in Lumbar Disc Herniation After Tubular Microdiscectomy.

Journal of magnetic resonance imaging : JMRI
BACKGROUND: Tubular microdiscectomy (TMD) is a treatment for lumbar disc herniation (LDH). Although the combination of MRI and deep learning (DL) has shown promise, its application in evaluating postoperative outcomes in TMD has not been fully explor...

Unbiased and reproducible liver MRI-PDFF estimation using a scan protocol-informed deep learning method.

European radiology
OBJECTIVE: To estimate proton density fat fraction (PDFF) from chemical shift encoded (CSE) MR images using a deep learning (DL)-based method that is precise and robust to different MR scanners and acquisition echo times (TEs).

Optimizing knee osteoarthritis severity prediction on MRI images using deep stacking ensemble technique.

Scientific reports
Knee osteoarthritis (KOA) represents a well-documented degenerative arthropathy prevalent among the elderly population. KOA is a persistent condition, also referred to as progressive joint Disease, stemming from the continual deterioration of cartila...

Disentangling Neurodegeneration From Aging in Multiple Sclerosis Using Deep Learning: The Brain-Predicted Disease Duration Gap.

Neurology
BACKGROUND AND OBJECTIVES: Disentangling brain aging from disease-related neurodegeneration in patients with multiple sclerosis (PwMS) is increasingly topical. The brain-age paradigm offers a window into this problem but may miss disease-specific eff...

Edge Computing for AI-Based Brain MRI Applications: A Critical Evaluation of Real-Time Classification and Segmentation.

Sensors (Basel, Switzerland)
Medical imaging plays a pivotal role in diagnostic medicine with technologies like Magnetic Resonance Imagining (MRI), Computed Tomography (CT), Positron Emission Tomography (PET), and ultrasound scans being widely used to assist radiologists and med...

BrainMass: Advancing Brain Network Analysis for Diagnosis With Large-Scale Self-Supervised Learning.

IEEE transactions on medical imaging
Foundation models pretrained on large-scale datasets via self-supervised learning demonstrate exceptional versatility across various tasks. Due to the heterogeneity and hard-to-collect medical data, this approach is especially beneficial for medical ...

Spatial and Modal Optimal Transport for Fast Cross-Modal MRI Reconstruction.

IEEE transactions on medical imaging
Multi-modal magnetic resonance imaging (MRI) plays a crucial role in comprehensive disease diagnosis in clinical medicine. However, acquiring certain modalities, such as T2-weighted images (T2WIs), is time-consuming and prone to be with motion artifa...