We propose a compositional graph-based Machine Learning (ML) framework for Alzheimer's disease (AD) detection that constructs complex ML predictors from modular components. In our directed computational graph, datasets are represented as nodes [Formu...
To develop an automated grading model for rectocele (RC) based on radiomics and evaluate its efficacy. This study retrospectively analyzed a total of 9,392 magnetic resonance imaging (MRI) images obtained from 222 patients who underwent dynamic magne...
This work aims to promote early and accurate diagnosis of Temporal Lobe Epilepsy (TLE) by developing state-of-the-art deep learning techniques, with the goal of minimizing the consequences of epilepsy on individuals and society. Current approaches fo...
BACKGROUND: To determine whether deep learning reconstruction (DLR) could improve the image quality of rectal MR images, and to explore the discrimination of the TN stage of rectal cancer by different readers and deep learning classification models, ...
BACKGROUND: T2-weighted imaging (T2WI), renowned for its sensitivity to edema and lesions, faces clinical limitations due to prolonged scanning time, increasing patient discomfort, and motion artifacts. The individual applications of artificial intel...
BACKGROUND: Meningioma consistency critically impacts surgical planning, as soft tumors are easier to resect than hard tumors. Current assessments of tumor consistency using MRI are subjective and lack quantitative accuracy. Integrating deep learning...
Effective treatment for brain tumors relies on accurate detection because this is a crucial health condition. Medical imaging plays a pivotal role in improving tumor detection and diagnosis in the early stage. This study presents two approaches to th...
Patients with lumbar degenerative disease typically undergo preoperative MRI combined with CT scans, but this approach introduces additional ionizing radiation and examination costs. To compare the effectiveness of MRI-based synthetic CT (sCT) in dis...
Clinical two-dimensional (2D) MRI data has seen limited application in the early diagnosis of Parkinson's disease (PD) and multiple system atrophy (MSA) due to quality limitations, yet its diagnostic and therapeutic potential remains underexplored. T...
This study aimed to develop a machine learning model based on Magnetic Resonance Imaging (MRI) radiomics for predicting early recurrence after curative surgery in patients with hepatocellular carcinoma (HCC).A retrospective analysis was conducted on ...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.