AI Medical Compendium Topic:
Magnetic Resonance Imaging

Clear Filters Showing 791 to 800 of 5968 articles

Deep Factor Learning for Accurate Brain Neuroimaging Data Analysis on Discrimination for Structural MRI and Functional MRI.

IEEE/ACM transactions on computational biology and bioinformatics
Analysis of neuroimaging data (e.g., Magnetic Resonance Imaging, structural and functional MRI) plays an important role in monitoring brain dynamics and probing brain structures. Neuroimaging data are multi-featured and non-linear by nature, and it i...

A Cascaded Mutliresolution Ensemble Deep Learning Framework for Large Scale Alzheimer's Disease Detection Using Brain MRIs.

IEEE/ACM transactions on computational biology and bioinformatics
Alzheimer's is progressive and irreversible type of dementia, which causes degeneration and death of cells and their connections in the brain. AD worsens over time and greatly impacts patients' life and affects their important mental functions, inclu...

Synthesis of higher-B CEST Z-spectra from lower-B data via deep learning and singular value decomposition.

NMR in biomedicine
Chemical exchange saturation transfer (CEST) MRI at 3 T suffers from low specificity due to overlapping CEST effects from multiple metabolites, while higher field strengths (B) allow for better separation of Z-spectral "peaks," aiding signal interpre...

Contrastive machine learning reveals Parkinson's disease specific features associated with disease severity and progression.

Communications biology
Parkinson's disease (PD) exhibits heterogeneity in terms of symptoms and prognosis, likely due to diverse neuroanatomical alterations. This study employs a contrastive deep learning approach to analyze Magnetic Resonance Imaging (MRI) data from 932 P...

Deep learning-based dose prediction for magnetic resonance-guided prostate radiotherapy.

Medical physics
BACKGROUND: Daily adaptive radiotherapy, as performed with the Elekta Unity MR-Linac, requires choosing between different adaptation methods, namely ATP (Adapt to Position) and ATS (Adapt to Shape), where the latter requires daily re-contouring to ob...

Attention-Based MultiOffset Deep Learning Reconstruction of Chemical Exchange Saturation Transfer (AMO-CEST) MRI.

IEEE journal of biomedical and health informatics
One challenge of chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is the long scan time due to multiple acquisitions of images at different saturation frequency offsets. k-space under-sampling strategy is commonly used to...

Boundary-Aware Gradient Operator Network for Medical Image Segmentation.

IEEE journal of biomedical and health informatics
Medical image segmentation is a crucial task in computer-aided diagnosis. Although convolutional neural networks (CNNs) have made significant progress in the field of medical image segmentation, the convolution kernels of CNNs are optimized from rand...

Enhancing Major Depressive Disorder Diagnosis With Dynamic-Static Fusion Graph Neural Networks.

IEEE journal of biomedical and health informatics
Major Depressive Disorder (MDD) is a debilitating, complex mental condition with unclear mechanisms hindering diagnostic progress. Research links MDD to abnormal brain connectivity using functional magnetic resonance imaging (fMRI). Yet, existing fMR...

LightNet: A Novel Lightweight Convolutional Network for Brain Tumor Segmentation in Healthcare.

IEEE journal of biomedical and health informatics
Diagnosis, treatment planning, surveillance, and the monitoring of clinical trials for brain diseases all benefit greatly from neuroimaging-based tumor segmentation. Recently, Convolutional Neural Networks (CNNs) have demonstrated promising results i...

Preoperative Prediction of Axillary Lymph Node Metastasis in Patients With Breast Cancer Through Multimodal Deep Learning Based on Ultrasound and Magnetic Resonance Imaging Images.

Academic radiology
RATIONALE AND OBJECTIVES: Deep learning can enhance the performance of multimodal image analysis, which is known for its noninvasive attributes and complementary efficacy, in predicting axillary lymph node (ALN) metastasis. Therefore, we established ...