Autism Spectrum Disorder (ASD) is a prevalent neurological condition with multiple co-occurring comorbidities that seriously affect mental health. Precisely diagnosis of ASD is crucial to intervention and rehabilitation. A single modality may not ful...
Many image fusion methods have been proposed to leverage the advantages of functional and anatomical images while compensating for their shortcomings. These methods integrate functional and anatomical images while presenting physiological and metabol...
OBJECTIVES: Although neoadjuvant immunochemotherapy has been widely applied in non-small cell lung cancer (NSCLC), predicting treatment response remains a challenge. We used pretreatment multimodal CT to explore deep learning-based immunochemotherapy...
Acta radiologica (Stockholm, Sweden : 1987)
Sep 2, 2024
BACKGROUND: Deep learning reconstruction (DLR) with denoising has been reported as potentially improving the image quality of magnetic resonance imaging (MRI). Multi-modal MRI is a critical non-invasive method for tumor detection, surgery planning, a...
Multi-modal Magnetic Resonance Imaging (MRI) offers complementary diagnostic information, but some modalities are limited by the long scanning time. To accelerate the whole acquisition process, MRI reconstruction of one modality from highly under-sam...
We aim to provide an overview of technical and clinical unmet needs in deep learning (DL) applications for quantitative and qualitative PET in PET/MR, with a focus on attenuation correction, image enhancement, motion correction, kinetic modeling, and...
SIGNIFICANCE: Monitoring oxygen saturation ( ) is important in healthcare, especially for diagnosing and managing pulmonary diseases. Non-contact approaches broaden the potential applications of measurement by better hygiene, comfort, and capabilit...
BACKGROUND: Recurrent pregnancy loss (RPL) frequently links to a prolonged endometrial receptivity (ER) window, leading to the implantation of non-viable embryos. Existing ER assessment methods face challenges in reliability and invasiveness. Radiomi...
A precise radiotherapy plan is crucial to ensure accurate segmentation of glioblastomas (GBMs) for radiation therapy. However, the traditional manual segmentation process is labor-intensive and heavily reliant on the experience of radiation oncologis...
The burgeoning field of brain health research increasingly leverages artificial intelligence (AI) to analyze and interpret neuroimaging data. Medical foundation models have shown promise of superior performance with better sample efficiency. This wor...