AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Multiomics

Showing 51 to 60 of 196 articles

Clear Filters

From multi-omics to predictive biomarker: AI in tumor microenvironment.

Frontiers in immunology
In recent years, tumors have emerged as a major global health threat. An increasing number of studies indicate that the production, development, metastasis, and elimination of tumor cells are closely related to the tumor microenvironment (TME). Advan...

Multi-omics characterization and machine learning of lung adenocarcinoma molecular subtypes to guide precise chemotherapy and immunotherapy.

Frontiers in immunology
BACKGROUND: Lung adenocarcinoma (LUAD) is a heterogeneous tumor characterized by diverse genetic and molecular alterations. Developing a multi-omics-based classification system for LUAD is urgently needed to advance biological understanding.

Artificial Intelligence-Driven Precision Medicine: Multi-Omics and Spatial Multi-Omics Approaches in Diffuse Large B-Cell Lymphoma (DLBCL).

Frontiers in bioscience (Landmark edition)
In this comprehensive review, we delve into the transformative role of artificial intelligence (AI) in refining the application of multi-omics and spatial multi-omics within the realm of diffuse large B-cell lymphoma (DLBCL) research. We scrutinized ...

Multiomics integration and machine learning reveal prognostic programmed cell death signatures in gastric cancer.

Scientific reports
Gastric cancer (GC) is characterized by notable heterogeneity and the impact of molecular subtypes on treatment and prognosis. The role of programmed cell death (PCD) in cellular processes is critical, yet its specific function in GC is underexplored...

Machine learning and multi-omics characterization of SLC2A1 as a prognostic factor in hepatocellular carcinoma: SLC2A1 is a prognostic factor in HCC.

Gene
Hepatocellular carcinoma (HCC) is characterized by high incidence, significant mortality, and marked heterogeneity, making accurate molecular subtyping essential for effective treatment. Using multi-omics data from HCC patients, we applied diverse cl...

Multi-Omics Integration With Machine Learning Identified Early Diabetic Retinopathy, Diabetic Macula Edema and Anti-VEGF Treatment Response.

Translational vision science & technology
PURPOSE: Identify optimal metabolic features and pathways across diabetic retinopathy (DR) stages, develop risk models to differentiate diabetic macular edema (DME), and predict anti-vascular endothelial growth factor (anti-VEGF) therapy response.