AIMC Topic: Neoadjuvant Therapy

Clear Filters Showing 21 to 30 of 207 articles

Deep learning algorithms for predicting pathological complete response in MRI of rectal cancer patients undergoing neoadjuvant chemoradiotherapy: a systematic review.

International journal of colorectal disease
PURPOSE: This systematic review examines the utility of deep learning algorithms in predicting pathological complete response (pCR) in rectal cancer patients undergoing neoadjuvant chemoradiotherapy (nCRT). The primary goal is to evaluate the perform...

Integration of Deep Learning and Sub-regional Radiomics Improves the Prediction of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer Patients.

Academic radiology
RATIONALE AND OBJECTIVES: The precise prediction of response to neoadjuvant chemoradiotherapy is crucial for tailoring perioperative treatment in patients diagnosed with locally advanced rectal cancer (LARC). This retrospective study aims to develop ...

Multimodal deep-learning model using pre-treatment endoscopic images and clinical information to predict efficacy of neoadjuvant chemotherapy in esophageal squamous cell carcinoma.

Esophagus : official journal of the Japan Esophageal Society
BACKGROUND: Neoadjuvant chemotherapy is standard for advanced esophageal squamous cell carcinoma, though often ineffective. Therefore, predicting the response to chemotherapy before treatment is desirable. However, there is currently no established m...

Raman Spectroscopy and Exosome-Based Machine Learning Predicts the Efficacy of Neoadjuvant Therapy for HER2-Positive Breast Cancer.

Analytical chemistry
Early prediction of the neoadjuvant therapy efficacy for HER2-positive breast cancer is crucial for personalizing treatment and enhancing patient outcomes. Exosomes, which play a role in tumor development and treatment response, are emerging as poten...

Hepatoid adenocarcinoma of the stomach with ideal response to neoadjuvant chemo-immunotherapy: a case report.

Frontiers in immunology
Hepatoid adenocarcinoma of the stomach (HAS) is a rare subtype of gastric cancer characterized by histological features resembling hepatocellular carcinoma. Surgical intervention remains the preferred treatment modality for eligible patients. However...

Machine Learning to Predict the Individual Risk of Treatment-Relevant Toxicity for Patients With Breast Cancer Undergoing Neoadjuvant Systemic Treatment.

JCO clinical cancer informatics
PURPOSE: Toxicity to systemic cancer treatment represents a major anxiety for patients and a challenge to treatment plans. We aimed to develop machine learning algorithms for the upfront prediction of an individual's risk of experiencing treatment-re...

Interpretable multi-modal artificial intelligence model for predicting gastric cancer response to neoadjuvant chemotherapy.

Cell reports. Medicine
Neoadjuvant chemotherapy assessment is imperative for prognostication and clinical management of locally advanced gastric cancer. We propose an incremental supervised contrastive learning model (iSCLM), an interpretable artificial intelligence framew...

Artificial intelligence measured 3D lumbosacral body composition and clinical outcomes in rectal cancer patients.

ANZ journal of surgery
INTRODUCTION: Patient body composition (BC) has been shown to help predict clinical outcomes in rectal cancer patients. Artificial intelligence algorithms have allowed for easier acquisition of BC measurements, creating a comprehensive BC profile in ...