Interdisciplinary sciences, computational life sciences
Sep 27, 2024
Diagnosing and classifying central nervous system tumors such as gliomas or glioblastomas pose a significant challenge due to their aggressive and infiltrative nature. However, recent advancements in metabolomics and magnetic resonance spectroscopy (...
RATIONALE AND OBJECTIVES: Recent radiomics studies on predicting pathological outcomes of glioma have shown immense potential. However, the predictive ability remains suboptimal due to the tumor intrinsic heterogeneity. We aimed to achieve better pat...
OBJECTIVE: Accurate assessment of Fuhrman grade is crucial for optimal clinical management and personalized treatment strategies in patients with clear cell renal cell carcinoma (CCRCC). In this study, we developed a predictive model using ultrasound...
RATIONALE AND OBJECTIVES: To develop and validate a deep learning model for automated pathological grading and prognostic assessment of lung cancer using CT imaging, thereby providing surgeons with a non-invasive tool to guide surgical planning.
BACKGROUND AND PURPOSE: Computed tomography (CT) and biopsy may be insufficient for preoperative evaluation of the grade and outcome of patients with chondrosarcoma. The aim of this study was to develop and validate a CT-based deep learning radiomics...
RATIONALE AND OBJECTIVES: This study aimed to develop a deep learning (DL) prognostic model to evaluate the significance of intra- and peritumoral radiomics in predicting outcomes for high-grade serous ovarian cancer (HGSOC) patients receiving platin...
Soft tissue sarcomas (STS) are a heterogeneous group of rare malignant tumors. Tumor grade might be underestimated in biopsy due to intratumoral heterogeneity. This mini-review aims to present the current state of predicting malignancy grades of STS ...
Journal of medical imaging and radiation sciences
Sep 9, 2024
INTRODUCTION: The complexity of diffuse gliomas relies on advanced imaging techniques like MRI to understand their heterogeneity. Utilizing the UCSF-PDGM dataset, this study harnesses MRI techniques, radiomics, and AI to analyze diffuse gliomas for o...
Gleason grade group (GG) is the most powerful prognostic variable in localized prostate cancer; however, interobserver variability remains a challenge. Artificial intelligence algorithms applied to histopathologic images standardize grading, but most...
This study utilized data from 140,294 prostate cancer cases from the Surveillance, Epidemiology, and End Results (SEER) database. Here, 10 different machine learning algorithms were applied to develop treatment options for predicting patients with pr...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.