AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Neoplasm Invasiveness

Showing 51 to 60 of 171 articles

Clear Filters

Predicting Lymphovascular Invasion in Non-small Cell Lung Cancer Using Deep Convolutional Neural Networks on Preoperative Chest CT.

Academic radiology
RATIONALE AND OBJECTIVES: Lymphovascular invasion (LVI) plays a significant role in precise treatments of non-small cell lung cancer (NSCLC). This study aims to build a non-invasive LVI prediction diagnosis model by combining preoperative CT images w...

Construction and validation of a clinical risk model based on machine learning for screening characteristic factors of lymphovascular space invasion in endometrial cancer.

Scientific reports
This study aimed to identify factors that affect lymphovascular space invasion (LVSI) in endometrial cancer (EC) using machine learning technology, and to build a clinical risk assessment model based on these factors. Samples were collected from May ...

Preoperative evaluation of visceral pleural invasion in peripheral lung cancer utilizing deep learning technology.

Surgery today
PURPOSE: This study aimed to assess the efficiency of artificial intelligence (AI) in the detection of visceral pleural invasion (VPI) of lung cancer using high-resolution computed tomography (HRCT) images, which is challenging for experts because of...

A novel artificial intelligence-based endoscopic ultrasonography diagnostic system for diagnosing the invasion depth of early gastric cancer.

Journal of gastroenterology
BACKGROUND: We developed an artificial intelligence (AI)-based endoscopic ultrasonography (EUS) system for diagnosing the invasion depth of early gastric cancer (EGC), and we evaluated the performance of this system.

Machine learning models to predict submucosal invasion in early gastric cancer based on endoscopy features and standardized color metrics.

Scientific reports
Conventional endoscopy is widely used in the diagnosis of early gastric cancers (EGCs), but the graphical features were loosely defined and dependent on endoscopists' experience. We aim to establish a more accurate predictive model for infiltration d...

A CT-based deep learning model predicts overall survival in patients with muscle invasive bladder cancer after radical cystectomy: a multicenter retrospective cohort study.

International journal of surgery (London, England)
BACKGROUND: Muscle invasive bladder cancer (MIBC) has a poor prognosis even after radical cystectomy (RC). Postoperative survival stratification based on radiomics and deep learning (DL) algorithms may be useful for treatment decision-making and foll...

Ultrasound-Based Deep Learning Radiomics Nomogram for the Assessment of Lymphovascular Invasion in Invasive Breast Cancer: A Multicenter Study.

Academic radiology
RATIONALE AND OBJECTIVES: The aim of this study was to develop a deep learning radiomics nomogram (DLRN) based on B-mode ultrasound (BMUS) and color doppler flow imaging (CDFI) images for preoperative assessment of lymphovascular invasion (LVI) statu...

Bladder MRI with deep learning-based reconstruction: a prospective evaluation of muscle invasiveness using VI-RADS.

Abdominal radiology (New York)
PURPOSE: To investigate the influence of deep learning reconstruction (DLR) on bladder MRI, specifically examination time, image quality, and diagnostic performance of vesical imaging reporting and data system (VI-RADS) within a prospective clinical ...

Preoperative detection of hepatocellular carcinoma's microvascular invasion on CT-scan by machine learning and radiomics: A preliminary analysis.

European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology
INTRODUCTION: Microvascular invasion (MVI) is the main risk factor for overall mortality and recurrence after surgery for hepatocellular carcinoma (HCC).The aim was to train machine-learning models to predict MVI on preoperative CT scan.