AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Neoplasm Invasiveness

Showing 71 to 80 of 171 articles

Clear Filters

CEMRI-Based Quantification of Intratumoral Heterogeneity for Predicting Aggressive Characteristics of Hepatocellular Carcinoma Using Habitat Analysis: Comparison and Combination of Deep Learning.

Academic radiology
RATIONALE AND OBJECTIVES: To explore both an intratumoral heterogeneity (ITH) model based on habitat analysis and a deep learning (DL) model based on contrast-enhanced magnetic resonance imaging (CEMRI) and validate its efficiency for predicting micr...

CT-Based Deep-Learning Model for Spread-Through-Air-Spaces Prediction in Ground Glass-Predominant Lung Adenocarcinoma.

Annals of surgical oncology
BACKGROUND: Sublobar resection is strongly associated with poor prognosis in early-stage lung adenocarcinoma, with the presence of tumor spread through air spaces (STAS). Thus, preoperative prediction of STAS is important for surgical planning. This ...

Prediction of visceral pleural invasion of clinical stage I lung adenocarcinoma using thoracoscopic images and deep learning.

Surgery today
PURPOSE: To develop deep learning models using thoracoscopic images to identify visceral pleural invasion (VPI) in patients with clinical stage I lung adenocarcinoma, and to verify if these models can be applied clinically.

Deep learning-based solid component measuring enabled interpretable prediction of tumor invasiveness for lung adenocarcinoma.

Lung cancer (Amsterdam, Netherlands)
BACKGROUND: The nature of the solid component of subsolid nodules (SSNs) can indicate tumor pathological invasiveness. However, preoperative solid component assessment still lacks a reference standard.

Lung-PNet: An Automated Deep Learning Model for the Diagnosis of Invasive Adenocarcinoma in Pure Ground-Glass Nodules on Chest CT.

AJR. American journal of roentgenology
Pure ground-glass nodules (pGGNs) on chest CT representing invasive adenocarcinoma (IAC) warrant lobectomy with lymph node resection. For pGGNs representing other entities, close follow-up or sublobar resection without node dissection may be appropr...

Contrast-Enhanced Ultrasound with Deep Learning with Attention Mechanisms for Predicting Microvascular Invasion in Single Hepatocellular Carcinoma.

Academic radiology
RATIONALE AND OBJECTIVES: Prediction of microvascular invasion (MVI) status of hepatocellular carcinoma (HCC) holds clinical significance for decision-making regarding the treatment strategy and evaluation of patient prognosis. We developed a deep le...

Deep learning-based image reconstruction improves radiologic evaluation of pituitary axis and cavernous sinus invasion in pituitary adenoma.

European journal of radiology
PURPOSE: To compare performance of 1-mm deep learning reconstruction (DLR) with 3-mm routine MRI imaging for the delineation of pituitary axis and identification of cavernous sinus invasion for pituitary macroadenoma.