Computational intelligence and neuroscience
Apr 5, 2020
Utilizing neuroimaging and machine learning (ML) to differentiate schizophrenia (SZ) patients from normal controls (NCs) and for detecting abnormal brain regions in schizophrenia has several benefits and can provide a reference for the clinical diagn...
OBJECTIVES: The existence of anatomofunctional brain abnormalities in bipolar disorder (BD) is now well established by magnetic resonance imaging (MRI) studies. To create diagnostic and prognostic tools, as well as identifying biologically valid subt...
Machine learning is a powerful tool for creating computational models relating brain function to behavior, and its use is becoming widespread in neuroscience. However, these models are complex and often hard to interpret, making it difficult to evalu...
OBJECTIVE: Clinical trials in amyotrophic lateral sclerosis (ALS) continue to rely on survival or functional scales as endpoints, despite the emergence of quantitative biomarkers. Neuroimaging-based biomarkers in ALS have been shown to detect ALS-ass...
Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Feb 28, 2020
Predicting Alzheimer's Disease (AD) from Mild Cognitive Impairment (MCI) and Cognitive Normal (CN) has become wide. Recent advancement in neuroimaging in adoption with machine learning techniques are especially useful for pattern recognition of medic...
BACKGROUND: Concomitant use of complementary, multimodal imaging measures and neurocognitive measures is reported to have higher accuracy as a biomarker in Alzheimer's dementia. However, such an approach has not been examined to differentiate healthy...
AJNR. American journal of neuroradiology
Feb 13, 2020
BACKGROUND AND PURPOSE: Motion artifacts are a frequent source of image degradation in the clinical application of MR imaging (MRI). Here we implement and validate an MRI motion-artifact correction method using a multiscale fully convolutional neural...
Computational and mathematical methods in medicine
Feb 12, 2020
Multimodal medical images are useful for observing tissue structure clearly in clinical practice. To integrate multimodal information, multimodal registration is significant. The entropy-based registration applies a structure descriptor set to replac...
Segmentation of brain lesions from magnetic resonance images (MRI) is an important step for disease diagnosis, surgical planning, radiotherapy and chemotherapy. However, due to noise, motion, and partial volume effects, automated segmentation of lesi...
Recently, deep neural network-powered quantitative susceptibility mapping (QSM), QSMnet, successfully performed ill-conditioned dipole inversion in QSM and generated high-quality susceptibility maps. In this paper, the network, which was trained by h...