AIMC Topic: Papillomaviridae

Clear Filters Showing 11 to 20 of 34 articles

Explainable prediction model for the human papillomavirus status in patients with oropharyngeal squamous cell carcinoma using CNN on CT images.

Scientific reports
Several studies have emphasised how positive and negative human papillomavirus (HPV+  and HPV-, respectively) oropharyngeal squamous cell carcinoma (OPSCC) has distinct molecular profiles, tumor characteristics, and disease outcomes. Different radiom...

Fully automated 3D machine learning model for HPV status characterization in oropharyngeal squamous cell carcinomas based on CT images.

American journal of otolaryngology
BACKGROUND: Human papillomavirus (HPV) status plays a major role in predicting oropharyngeal squamous cell carcinoma (OPSCC) survival. This study assesses the accuracy of a fully automated 3D convolutional neural network (CNN) in predicting HPV statu...

A Novel Deep Learning Algorithm for Human Papillomavirus Infection Prediction in Head and Neck Cancers Using Routine Histology Images.

Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
The etiology of head and neck squamous cell carcinoma (HNSCC) involves multiple carcinogens, such as alcohol, tobacco, and infection with human papillomavirus (HPV). Because HPV infection influences the prognosis, treatment, and survival of patients ...

Scrutinizing high-risk patients from ASC-US cytology via a deep learning model.

Cancer cytopathology
BACKGROUND: Atypical squamous cells of undetermined significance (ASC-US) is the most frequent but ambiguous abnormal Papanicolaou (Pap) interpretation and is generally triaged by high-risk human papillomavirus (hrHPV) testing before colposcopy. This...

Machine learning prediction of antiviral-HPV protein interactions for anti-HPV pharmacotherapy.

Scientific reports
Persistent infection with high-risk types Human Papillomavirus could cause diseases including cervical cancers and oropharyngeal cancers. Nonetheless, so far there is no effective pharmacotherapy for treating the infection from high-risk HPV types, a...

The development of "automated visual evaluation" for cervical cancer screening: The promise and challenges in adapting deep-learning for clinical testing: Interdisciplinary principles of automated visual evaluation in cervical screening.

International journal of cancer
There is limited access to effective cervical cancer screening programs in many resource-limited settings, resulting in continued high cervical cancer burden. Human papillomavirus (HPV) testing is increasingly recognized to be the preferable primary ...