Purpose To reduce radiotracer requirements for amyloid PET/MRI without sacrificing diagnostic quality by using deep learning methods. Materials and Methods Forty data sets from 39 patients (mean age ± standard deviation [SD], 67 years ± 8), including...
Positron emission tomography (PET) has been substantially used recently. To minimize the potential health risk caused by the tracer radiation inherent to PET scans, it is of great interest to synthesize the high-quality PET image from the low-dose on...
Purpose To develop and validate a deep learning algorithm that predicts the final diagnosis of Alzheimer disease (AD), mild cognitive impairment, or neither at fluorine 18 (F) fluorodeoxyglucose (FDG) PET of the brain and compare its performance to t...
PET image reconstruction is challenging due to the ill-poseness of the inverse problem and limited number of detected photons. Recently, the deep neural networks have been widely and successfully used in computer vision tasks and attracted growing in...
Utilizing the publicly available neuroimaging database enabled by Alzheimer's disease Neuroimaging Initiative (ADNI; http://adni.loni.usc.edu/ ), we have compared the performance of automated classification algorithms that differentiate AD vs. normal...
Journal of nuclear medicine : official publication, Society of Nuclear Medicine
Aug 30, 2018
Attenuation correction is a notable challenge associated with simultaneous PET/MRI, particularly in neuroimaging, where sharp boundaries between air and bone volumes exist. This challenge leads to concerns about the visual and, more specifically, qua...
Journal of nuclear medicine : official publication, Society of Nuclear Medicine
Aug 30, 2018
Whole-body attenuation correction (AC) is still challenging in combined PET/MR scanners. We describe Dixon-VIBE Deep Learning (DIVIDE), a deep-learning network that allows synthesizing pelvis pseudo-CT maps based only on the standard Dixon volumetric...
A large number of papers have introduced novel machine learning and feature extraction methods for automatic classification of Alzheimer's disease (AD). However, while the vast majority of these works use the public dataset ADNI for evaluation, they ...
International journal of neural systems
Jul 26, 2018
Spatial and intensity normalizations are nowadays a prerequisite for neuroimaging analysis. Influenced by voxel-wise and other univariate comparisons, where these corrections are key, they are commonly applied to any type of analysis and imaging moda...