AIMC Topic: Postoperative Complications

Clear Filters Showing 101 to 110 of 993 articles

Assessing the value of deep neural networks for postoperative complication prediction in pancreaticoduodenectomy patients.

PloS one
INTRODUCTION: Pancreaticoduodenectomy (PD) for patients with pancreatic ductal adenocarcinoma (PDAC) is associated with a high risk of postoperative complications (PoCs) and risk prediction of these is therefore critical for optimal treatment plannin...

Predicting lack of clinical improvement following varicose vein ablation using machine learning.

Journal of vascular surgery. Venous and lymphatic disorders
OBJECTIVE: Varicose vein ablation is generally indicated in patients with active/healed venous ulcers. However, patient selection for intervention in individuals without venous ulcers is less clear. Tools that predict lack of clinical improvement (LC...

Using artificial intelligence to predict post-operative outcomes in congenital heart surgeries: a systematic review.

BMC cardiovascular disorders
INTRODUCTION: Congenital heart disease (CHD) represents the most common group of congenital anomalies, constitutes a significant contributor to the burden of non-communicable diseases, highlighting the critical need for improved risk assessment tools...

Machine learning models predict the progression of long-term renal insufficiency in patients with renal cancer after radical nephrectomy.

BMC nephrology
BACKGROUND: Chronic Kidney Disease (CKD) is a common severe complication after radical nephrectomy in patients with renal cancer. The timely and accurate prediction of the long-term progression of renal function post-surgery is crucial for early inte...

Utilizing machine learning approaches to investigate the relationship between cystatin C and serious complications in esophageal cancer patients after esophagectomy.

Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer
BACKGROUND: The purpose of this study is to investigate the relationship between preoperative cystatin C levels and the risk of serious postoperative complications in esophageal cancer (EC) patients, utilizing advanced machine learning (ML) methodolo...

Development and validation of interpretable machine learning models for postoperative pneumonia prediction.

Frontiers in public health
BACKGROUND: Postoperative pneumonia, a prevalent form of hospital-acquired pneumonia, poses significant risks to patients' prognosis and even their lives. This study aimed to develop and validate a predictive model for postoperative pneumonia in surg...

Impact of Inflammation After Cardiac Surgery on 30-Day Mortality and Machine Learning Risk Prediction.

Journal of cardiothoracic and vascular anesthesia
OBJECTIVES: To investigate the impact of systemic inflammatory response syndrome (SIRS) on 30-day mortality following cardiac surgery and develop a machine learning model to predict SIRS.

Identification of a Susceptible and High-Risk Population for Postoperative Systemic Inflammatory Response Syndrome in Older Adults: Machine Learning-Based Predictive Model.

Journal of medical Internet research
BACKGROUND: Systemic inflammatory response syndrome (SIRS) is a serious postoperative complication among older adult surgical patients that frequently develops into sepsis or even death. Notably, the incidences of SIRS and sepsis steadily increase wi...

Perioperative risk scores: prediction, pitfalls, and progress.

Current opinion in anaesthesiology
PURPOSE OF REVIEW: Perioperative risk scores aim to risk-stratify patients to guide their evaluation and management. Several scores are established in clinical practice, but often do not generalize well to new data and require ongoing updates to impr...