AIMC Topic: Predictive Value of Tests

Clear Filters Showing 1881 to 1890 of 2216 articles

Machine-learning approaches for risk prediction in transcatheter aortic valve implantation: Systematic review and meta-analysis.

The Journal of thoracic and cardiovascular surgery
OBJECTIVES: With the expanding integration of artificial intelligence (AI) and machine learning (ML) into the structural heart domain, numerous ML models have emerged for the prediction of adverse outcomes after transcatheter aortic valve implantatio...

Prediction of hypertension and diabetes in twin pregnancy using machine learning model based on characteristics at first prenatal visit: national registry study.

Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology
OBJECTIVE: To develop a prediction model for hypertensive disorders of pregnancy (HDP) and gestational diabetes mellitus (GDM) in twin pregnancy using characteristics obtained at the first prenatal visit.

An APRI+ALBI-Based Multivariable Model as a Preoperative Predictor for Posthepatectomy Liver Failure.

Annals of surgery
OBJECTIVE AND BACKGROUND: Clinically significant posthepatectomy liver failure (PHLF B+C) remains the main cause of mortality after major hepatic resection. This study aimed to establish an aspartate aminotransferase to platelet ratio combined with a...

Different Performances of Machine Learning Models to Classify Dysphonic and Non-Dysphonic Voices.

Journal of voice : official journal of the Voice Foundation
OBJECTIVE: To analyze the performance of 10 different machine learning (ML) classifiers for discrimination between dysphonic and non-dysphonic voices, using a variance threshold as a method for the selection and reduction of acoustic measurements use...

Automatic GRBAS Scoring of Pathological Voices using Deep Learning and a Small Set of Labeled Voice Data.

Journal of voice : official journal of the Voice Foundation
OBJECTIVES: Auditory-perceptual evaluation frameworks, such as the grade-roughness-breathiness-asthenia-strain (GRBAS) scale, are the gold standard for the quantitative evaluation of pathological voice quality. However, the evaluation is subjective; ...

Detection of Neurogenic Voice Disorders Using the Fisher Vector Representation of Cepstral Features.

Journal of voice : official journal of the Voice Foundation
Neurogenic voice disorders (NVDs) are caused by damage or malfunction of the central or peripheral nervous system that controls vocal fold movement. In this paper, we investigate the potential of the Fisher vector (FV) encoding in automatic detection...

Do positive psychosocial factors contribute to the prediction of coronary artery disease? A UK Biobank-based machine learning approach.

European journal of preventive cardiology
AIMS: Most prediction models for coronary artery disease (CAD) compile biomedical and behavioural risk factors using linear multivariate models. This study explores the potential of integrating positive psychosocial factors (PPFs), including happines...

Machine Learning-Based Prediction of Large-for-Gestational-Age Infants in Mothers With Gestational Diabetes Mellitus.

The Journal of clinical endocrinology and metabolism
CONTEXT: Large-for-gestational-age (LGA), one of the most common complications of gestational diabetes mellitus (GDM), has become a global concern. The predictive performance of common continuous glucose monitoring (CGM) metrics for LGA is limited.

Utilizing Artificial Intelligence for Predicting Postoperative Complications in Breast Reduction Surgery: A Comprehensive Retrospective Analysis of Predictive Features and Outcomes.

Aesthetic surgery journal
BACKGROUND: Breast reduction is a common procedure with growing rates in the United States of America, aimed at alleviating the physical and psychological burdens of macromastia. Despite high success rates, it carries a risk of complications, with in...