Journal of gastrointestinal surgery : official journal of the Society for Surgery of the Alimentary Tract
Oct 3, 2024
BACKGROUND: Signet ring cell (SRC) gastric carcinoma is traditionally associated with a poor prognosis. However, the literature has presented contradictory results. Linear models are the standard statistical tools typically used to study these condit...
BACKGROUND: Upper gastrointestinal bleeding (UGIB) is a significant cause of morbidity and mortality worldwide. This study investigates the use of residual variables and machine learning (ML) models for predicting major bleeding in patients with seve...
BACKGROUND: The solid pattern is a highly malignant subtype of lung adenocarcinoma. In the current era of transitioning from lobectomy to sublobar resection for the surgical treatment of small lung cancers, preoperative identification of this subtype...
INTRODUCTION: Primary refractory disease affects 30-40% of patients diagnosed with DLBCL and is a significant challenge in disease management due to its poor prognosis. Predicting refractory status could greatly inform treatment strategies, enabling ...
AIM: In this research, we aimed to develop a model for the accurate prediction of gastric cancer based on H&E findings combined with machine learning pathomics.
BACKGROUND: Plaque quantification from coronary computed tomography angiography has emerged as a valuable predictor of cardiovascular risk. Deep learning can provide automated quantification of coronary plaque from computed tomography angiography. We...
BACKGROUND AND OBJECTIVE: The effectiveness of radiofrequency ablation (RFA) in improving long-term survival outcomes for patients with a solitary hepatocellular carcinoma (HCC) measuring 5 cm or less remains uncertain. This study was designed to elu...
Neurorehabilitation and neural repair
Sep 28, 2024
BACKGROUND: The prognosis of prolonged disorders of consciousness (pDoC) in children has consistently posed a formidable challenge in clinical decision-making.
Journal of thrombosis and thrombolysis
Sep 28, 2024
To explore the predictive value of traditional machine learning (ML) and deep learning (DL) algorithms based on computed tomography pulmonary angiography (CTPA) images for short-term adverse outcomes in patients with acute pulmonary embolism (APE). T...
In this study, a model for predicting lymph node metastasis in papillary thyroid cancer was trained using pathology images from the TCGA(The Cancer Genome Atlas) public dataset of papillary thyroid cancer, and a front-end inference model was trained ...