AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Radiation Dosage

Showing 391 to 400 of 501 articles

Clear Filters

Artificial intelligence and breast screening: French Radiology Community position paper.

Diagnostic and interventional imaging
The objective of this article was to evaluate the evidence currently available about the clinical value of artificial intelligence (AI) in breast imaging. Nine experts from the disciplines involved in breast disease management - including physicists ...

Physics-driven learning of x-ray skin dose distribution in interventional procedures.

Medical physics
PURPOSE: Radiation doses accumulated during very complicated image-guided x-ray procedures have the potential to cause stochastic, but also deterministic effects, such as skin rashes or even hair loss. To monitor and reduce radiation-related risks to...

The effects of physics-based data augmentation on the generalizability of deep neural networks: Demonstration on nodule false-positive reduction.

Medical physics
PURPOSE: An important challenge for deep learning models is generalizing to new datasets that may be acquired with acquisition protocols different from the training set. It is not always feasible to expand training data to the range encountered in cl...

Gradient regularized convolutional neural networks for low-dose CT image enhancement.

Physics in medicine and biology
The potential risks of x-ray to patients have transferred the public's attention from normal dose CT (NDCT) to low-dose CT (LDCT). However, simply lowering the radiation dose of the CT system will significantly degrade the quality of CT images such a...

A performance comparison of convolutional neural network-based image denoising methods: The effect of loss functions on low-dose CT images.

Medical physics
PURPOSE: Convolutional neural network (CNN)-based image denoising techniques have shown promising results in low-dose CT denoising. However, CNN often introduces blurring in denoised images when trained with a widely used pixel-level loss function. P...

Machine Learning for Automatic Paraspinous Muscle Area and Attenuation Measures on Low-Dose Chest CT Scans.

Academic radiology
RATIONALE AND OBJECTIVES: To develop and evaluate an automated machine learning (ML) algorithm for segmenting the paraspinous muscles on chest computed tomography (CT) scans to evaluate for presence of sarcopenia.

A convolutional neural network for ultra-low-dose CT denoising and emphysema screening.

Medical physics
PURPOSE: Reducing dose level to achieve ALARA is an important task in diagnostic and therapeutic applications of computed tomography (CT) imaging. Effective image quality enhancement strategies are crucial to compensate for the degradation caused by ...

Deep learning-enabled accurate normalization of reconstruction kernel effects on emphysema quantification in low-dose CT.

Physics in medicine and biology
Lung densitometry is being frequently adopted in CT-based emphysema quantification, yet known to be affected by the choice of reconstruction kernel. This study presents a two-step deep learning architecture that enables accurate normalization of reco...

An image-based deep learning framework for individualizing radiotherapy dose.

The Lancet. Digital health
BACKGROUND: Radiotherapy continues to be delivered uniformly without consideration of individual tumor characteristics. To advance toward more precise treatments in radiotherapy, we queried the lung computed tomography (CT)-derived feature space to i...