PURPOSE: The aim of this study is to convert low-dose PET (L-PET) images to full-dose PET (F-PET) images based on our Diffused Multi-scale Generative Adversarial Network (DMGAN) to offer a potential balance between reducing radiation exposure and mai...
OBJECTIVES: To exploit the capability of super-resolution deep learning reconstruction (SR-DLR) to save radiation exposure from coronary CT angiography (CCTA) and assess its impact on image quality, coronary plaque quantification and characterization...
OBJECTIVE: The aim of this study was to intraindividually compare the conspicuity of focal liver lesions (FLLs) between low- and ultra-low-dose computed tomography (CT) with deep learning reconstruction (DLR) and standard-dose CT with model-based ite...
BACKGROUND: Online adaptive radiotherapy (OART) and rapid quality assurance (QA) are essential for effective heavy ion therapy (HIT). However, there is a shortage of deep learning (DL) models and workflows for predicting Monte Carlo (MC) doses in suc...
Medical & biological engineering & computing
Jan 23, 2025
Positron emission tomography (PET) imaging plays a pivotal role in oncology for the early detection of metastatic tumors and response to therapy assessment due to its high sensitivity compared to anatomical imaging modalities. The balance between ima...
Low-dose computed tomography (LDCT) has gained significant attention in hospitals and clinics as a popular imaging modality for reducing the risk of x-ray radiation. However, reconstructed LDCT images often suffer from undesired noise and artifacts, ...
RATIONALE AND OBJECTIVES: Photon Counting CT (PCCT) offers advanced imaging capabilities with potential for substantial radiation dose reduction; however, achieving this without compromising image quality remains a challenge due to increased noise at...
OBJECTIVES: To evaluate the image quality and lung nodule detectability of ultralow-dose CT (ULDCT) with adaptive statistical iterative reconstruction-V (ASiR-V) post-processed using a deep learning image reconstruction (DLIR)-based image domain comp...
. The primary purpose of this work is to demonstrate the feasibility of a deep convolutional neural network (dCNN) based algorithm that uses two-dimensional (2D) electronic portal imaging device (EPID) images and CT images as input to reconstruct 3D ...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.