AIMC Topic: Radiation Dosage

Clear Filters Showing 41 to 50 of 546 articles

Diffused Multi-scale Generative Adversarial Network for low-dose PET images reconstruction.

Biomedical engineering online
PURPOSE: The aim of this study is to convert low-dose PET (L-PET) images to full-dose PET (F-PET) images based on our Diffused Multi-scale Generative Adversarial Network (DMGAN) to offer a potential balance between reducing radiation exposure and mai...

Ultra-low-dose coronary CT angiography via super-resolution deep learning reconstruction: impact on image quality, coronary plaque, and stenosis analysis.

European radiology
OBJECTIVES: To exploit the capability of super-resolution deep learning reconstruction (SR-DLR) to save radiation exposure from coronary CT angiography (CCTA) and assess its impact on image quality, coronary plaque quantification and characterization...

Intraindividual Comparison of Image Quality Between Low-Dose and Ultra-Low-Dose Abdominal CT With Deep Learning Reconstruction and Standard-Dose Abdominal CT Using Dual-Split Scan.

Investigative radiology
OBJECTIVE: The aim of this study was to intraindividually compare the conspicuity of focal liver lesions (FLLs) between low- and ultra-low-dose computed tomography (CT) with deep learning reconstruction (DLR) and standard-dose CT with model-based ite...

Deep learning-based Monte Carlo dose prediction for heavy-ion online adaptive radiotherapy and fast quality assurance: A feasibility study.

Medical physics
BACKGROUND: Online adaptive radiotherapy (OART) and rapid quality assurance (QA) are essential for effective heavy ion therapy (HIT). However, there is a shortage of deep learning (DL) models and workflows for predicting Monte Carlo (MC) doses in suc...

Non-parametric Bayesian deep learning approach for whole-body low-dose PET reconstruction and uncertainty assessment.

Medical & biological engineering & computing
Positron emission tomography (PET) imaging plays a pivotal role in oncology for the early detection of metastatic tumors and response to therapy assessment due to its high sensitivity compared to anatomical imaging modalities. The balance between ima...

Dual-domain Wasserstein Generative Adversarial Network with Hybrid Loss for Low-dose CT Imaging.

Physics in medicine and biology
Low-dose computed tomography (LDCT) has gained significant attention in hospitals and clinics as a popular imaging modality for reducing the risk of x-ray radiation. However, reconstructed LDCT images often suffer from undesired noise and artifacts, ...

Evaluation of a Deep Learning Denoising Algorithm for Dose Reduction in Whole-Body Photon-Counting CT Imaging: A Cadaveric Study.

Academic radiology
RATIONALE AND OBJECTIVES: Photon Counting CT (PCCT) offers advanced imaging capabilities with potential for substantial radiation dose reduction; however, achieving this without compromising image quality remains a challenge due to increased noise at...

Feasibility of reconstructingpatient 3D dose distributions from 2D EPID image data using convolutional neural networks.

Physics in medicine and biology
. The primary purpose of this work is to demonstrate the feasibility of a deep convolutional neural network (dCNN) based algorithm that uses two-dimensional (2D) electronic portal imaging device (EPID) images and CT images as input to reconstruct 3D ...