PURPOSE: This study aimed to investigate the performance of an artificial intelligence (AI)-based lung nodule detection program in ultra-low-dose CT (ULDCT) imaging, with a focus on the influence of various image reconstruction methods on detection a...
Purpose To assess the agreement between routine-dose (RD) and lower-dose (LD) contrast-enhanced CT scans, with and without Digital Imaging and Communications in Medicine-based deep learning-based denoising (DLD), in evaluating small renal masses (SRM...
Radiographics : a review publication of the Radiological Society of North America, Inc
Jul 1, 2025
Coronary CT angiography (CCTA) has been widely used as a noninvasive modality for accurate assessment of coronary artery disease (CAD) in clinical settings. However, the following limitations of CCTA remain issues of interest: motion, stair-step, and...
Discrete wavelet transforms have been applied in many machine learning models for the analysis of COVID-19; however, little is known about the impact of combined multilevel wavelet decompositions for the disease identification. This study proposes a ...
RATIONALE AND OBJECTIVES: CT angiography (CTA) is a commonly used clinical examination to detect abnormal arteries and diagnose pulmonary sequestration (PS). Reducing the radiation dose, contrast medium dosage, and injection pressure in CTA, especial...
Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Jul 1, 2025
Accurate segmentation of lung tumors is essential for advancing personalized medicine in non-small cell lung cancer (NSCLC). However, stage IV NSCLC presents significant challenges due to heterogeneous tumor morphology and the presence of associated ...
OBJECTIVES: Optimize deep learning-based vertebrae segmentation in longitudinal CT scans of multiple myeloma patients using structural uncertainty analysis.
OBJECTIVE: To evaluate and compare the diagnostic performance of CT texture analysis (CTTA), perfusion CT (PCT), and dual-energy CT (DECT) in distinguishing between clear-cell renal cell carcinoma (ccRCC) and non-ccRCC.
Purpose To develop and evaluate a novel multitask deep learning framework for automated detection and localization of endoleaks at aortic digital subtraction angiography (DSA) performed during real-world endovascular aneurysm repair (EVAR) procedures...
OBJECTIVE: To evaluate the radiation and contrast dose reduction potential of combining 70 kV with deep learning image reconstruction (DLIR) in coronary computed tomography angiography (CCTA) for slender patients with body-mass-index (BMI) ≤25 kg/m2.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.