Computational and mathematical methods in medicine
Oct 28, 2020
The American Cancer Society expected to diagnose 276,480 new cases of invasive breast cancer in the USA and 48,530 new cases of noninvasive breast cancer among women in 2020. Early detection of breast cancer, followed by appropriate treatment, can re...
Journal of clinical research in pediatric endocrinology
Oct 26, 2020
Bone age is one of biological indicators of maturity used in clinical practice and it is a very important parameter of a child’s assessment, especially in paediatric endocrinology. The most widely used method of bone age assessment is by performing a...
Background Longitudinal follow-up of interstitial lung diseases (ILDs) at CT mainly relies on the evaluation of the extent of ILD, without accounting for lung shrinkage. Purpose To develop a deep learning-based method to depict worsening of ILD based...
AIM: To investigate the performance of a deep-learning approach termed lesion-aware convolutional neural network (LACNN) to identify 14 different thoracic diseases on chest X-rays (CXRs).
OBJECTIVES: To compare image noise and sharpness of vessels, liver, and muscle in lower extremity CT angiography between "adaptive statistical iterative reconstruction-V" (ASIR-V) and deep learning reconstruction "TrueFidelity" (TFI).
Coronavirus disease 2019 (COVID-19) emerged in 2019 and disseminated around the world rapidly. Computed tomography (CT) imaging has been proven to be an important tool for screening, disease quantification and staging. The latter is of extreme import...
We evaluated the reproducibility of computer-aided detections (CADs) with a convolutional neural network (CNN) on chest radiographs (CXRs) of abnormal pulmonary patterns in patients, acquired within a short-term interval. Anonymized CXRs (n = 9792) o...
AJR. American journal of roentgenology
Oct 14, 2020
The objective of our study was to assess the effect of the combination of deep learning-based denoising (DLD) and iterative reconstruction (IR) on image quality and Lung Imaging Reporting and Data System (Lung-RADS) evaluation on chest ultra-low-dos...
OBJECTIVE: To evaluate by means of regression models the relationships between baseline clinical and laboratory data and lung involvement on baseline chest CT and to quantify the thoracic disease using an artificial intelligence tool and a visual sco...
PURPOSE: To compare the image quality of brain computed tomography (CT) images reconstructed with deep learning-based image reconstruction (DLIR) and adaptive statistical iterative reconstruction-Veo (ASIR-V).
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.