AJR. American journal of roentgenology
Mar 1, 2020
The objective of this study was to compare image quality and clinically significant lesion detection on deep learning reconstruction (DLR) and iterative reconstruction (IR) images of submillisievert chest and abdominopelvic CT. Our prospective mult...
BACKGROUND: Heart failure (HF) is a major cause of morbidity and mortality. However, much of the clinical data is unstructured in the form of radiology reports, while the process of data collection and curation is arduous and time-consuming.
The purpose of this study was to develop and test the performance of a deep learning-based algorithm to detect ileocolic intussusception using abdominal radiographs of young children. For the training set, children (≤5 years old) who underwent abdomi...
OBJECTIVES: The conceptus dose during diagnostic imaging procedures for pregnant patients raises health concerns owing to the high radiosensitivity of the developing embryo/fetus. The aim of this work is to develop a methodology for automated constru...
Background Nonalcoholic fatty liver disease and its consequences are a growing public health concern requiring cross-sectional imaging for noninvasive diagnosis and quantification of liver fat. Purpose To investigate a deep learning-based automated l...
Convolutional Neural Networks (CNNs) have achieved state-of-the-art performance in many different 2D medical image analysis tasks. In clinical practice, however, a large part of the medical imaging data available is in 3D, e.g, magnetic resonance ima...
OBJECTIVE: To identify the feasibility of using a deep convolutional neural network (DCNN) for the detection and localization of hip fractures on plain frontal pelvic radiographs (PXRs). Hip fracture is a leading worldwide health problem for the elde...
IEEE transactions on bio-medical engineering
Sep 1, 2019
An efficient and precise liver extraction from computed tomography (CT) images is a crucial step for computer-aided hepatic diseases diagnosis and treatment. Considering the possible risk to patient's health due to X-ray radiation of repetitive CT ex...
Assess the efficacy of deep convolutional neural networks (DCNNs) in detection of critical enteric feeding tube malpositions on radiographs. 5475 de-identified HIPAA compliant frontal view chest and abdominal radiographs were obtained, consisting of ...