AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Radiopharmaceuticals

Showing 11 to 20 of 178 articles

Clear Filters

Image Synthesis in Nuclear Medicine Imaging with Deep Learning: A Review.

Sensors (Basel, Switzerland)
Nuclear medicine imaging (NMI) is essential for the diagnosis and sensing of various diseases; however, challenges persist regarding image quality and accessibility during NMI-based treatment. This paper reviews the use of deep learning methods for g...

Machine learning-based prognostic modeling in gallbladder cancer using clinical data and pre-treatment [F]-FDG-PET-radiomic features.

Japanese journal of radiology
OBJECTIVES: This study evaluates the effectiveness of machine learning (ML) models that incorporate clinical and 2-deoxy-2-[F]fluoro-D-glucose ([F]-FDG)-positron emission tomography (PET)-radiomic features for predicting outcomes in gallbladder cance...

Automated Measurement of Effective Radiation Dose by F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography.

Tomography (Ann Arbor, Mich.)
BACKGROUND/OBJECTIVES: Calculating the radiation dose from CT in F-PET/CT examinations poses a significant challenge. The objective of this study is to develop a deep learning-based automated program that standardizes the measurement of radiation dos...

Uncertainty-aware automatic TNM staging classification for [F] Fluorodeoxyglucose PET-CT reports for lung cancer utilising transformer-based language models and multi-task learning.

BMC medical informatics and decision making
BACKGROUND: [F] Fluorodeoxyglucose (FDG) PET-CT is a clinical imaging modality widely used in diagnosing and staging lung cancer. The clinical findings of PET-CT studies are contained within free text reports, which can currently only be categorised ...

Non-invasive Prediction of Lymph Node Metastasis in NSCLC Using Clinical, Radiomics, and Deep Learning Features From F-FDG PET/CT Based on Interpretable Machine Learning.

Academic radiology
PURPOSE: This study aimed to develop and evaluate a machine learning model combining clinical, radiomics, and deep learning features derived from PET/CT imaging to predict lymph node metastasis (LNM) in patients with non-small cell lung cancer (NSCLC...

F-18 FDG PET/CT based Preoperative Machine Learning Prediction Models for Evaluating Regional Lymph Node Metastasis Status of Patients with Colon Cancer.

Asian Pacific journal of cancer prevention : APJCP
OBJECTIVE: This study aimed to develop a simple machine-learning model incorporating lymph node metastasis status with F-18 Fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) and clinical information for predicting regio...

Predicting malignant risk of ground-glass nodules using convolutional neural networks based on dual-time-point F-FDG PET/CT.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: Accurately predicting the malignant risk of ground-glass nodules (GGOs) is crucial for precise treatment planning. This study aims to utilize convolutional neural networks based on dual-time-point F-FDG PET/CT to predict the malignant ris...

Comparative analysis of intestinal tumor segmentation in PET CT scans using organ based and whole body deep learning.

BMC medical imaging
BACKGROUND: 18-Fluoro-deoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) is a valuable imaging tool widely used in the management of cancer patients. Deep learning models excel at segmenting highly metabolic tumors but face ch...

Deep learning-based organ-wise dosimetry of Cu-DOTA-rituximab through only one scanning.

Scientific reports
This study aimed to generate a delayed Cu-dotatate (DOTA)-rituximab positron emission tomography (PET) image from its early-scanned image by deep learning to mitigate the inconvenience and cost of estimating absorbed radiopharmaceutical doses. We acq...