AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Receptors, Antigen, T-Cell

Showing 11 to 20 of 45 articles

Clear Filters

TCR-H: explainable machine learning prediction of T-cell receptor epitope binding on unseen datasets.

Frontiers in immunology
Artificial-intelligence and machine-learning (AI/ML) approaches to predicting T-cell receptor (TCR)-epitope specificity achieve high performance metrics on test datasets which include sequences that are also part of the training set but fail to gener...

A real-world pharmacovigilance study on cardiovascular adverse events of tisagenlecleucel using machine learning approach.

Scientific reports
Chimeric antigen receptor T-cell (CAR-T) therapies are a paradigm-shifting therapeutic in patients with hematological malignancies. However, some concerns remain that they may cause serious cardiovascular adverse events (AEs), for which data are scar...

Machine learning for the identification of neoantigen-reactive CD8 + T cells in gastrointestinal cancer using single-cell sequencing.

British journal of cancer
BACKGROUND: It appears that tumour-infiltrating neoantigen-reactive CD8 + T (Neo T) cells are the primary driver of immune responses to gastrointestinal cancer in patients. However, the conventional method is very time-consuming and complex for ident...

BertTCR: a Bert-based deep learning framework for predicting cancer-related immune status based on T cell receptor repertoire.

Briefings in bioinformatics
The T cell receptor (TCR) repertoire is pivotal to the human immune system, and understanding its nuances can significantly enhance our ability to forecast cancer-related immune responses. However, existing methods often overlook the intra- and inter...

Cancer Immunotherapies Ignited by a Thorough Machine Learning-Based Selection of Neoantigens.

Advanced biology
Identification of neoantigens, derived from somatic DNA alterations, emerges as a promising strategy for cancer immunotherapies. However, not all somatic mutations result in immunogenicity, hence, efficient tools to predict the immunogenicity of neoe...

Exploring the potential of structure-based deep learning approaches for T cell receptor design.

PLoS computational biology
Deep learning methods, trained on the increasing set of available protein 3D structures and sequences, have substantially impacted the protein modeling and design field. These advancements have facilitated the creation of novel proteins, or the optim...

Predicting adaptive immune receptor specificities by machine learning is a data generation problem.

Cell systems
Determining the specificity of adaptive immune receptors-B cell receptors (BCRs), their secreted form antibodies, and T cell receptors (TCRs)-is critical for understanding immune responses and advancing immunotherapy and drug discovery. Immune recept...

Reading the repertoire: Progress in adaptive immune receptor analysis using machine learning.

Cell systems
The adaptive immune system holds invaluable information on past and present immune responses in the form of B and T cell receptor sequences, but we are limited in our ability to decode this information. Machine learning approaches are under active in...

Meta-Learning Enables Complex Cluster-Specific Few-Shot Binding Affinity Prediction for Protein-Protein Interactions.

Journal of chemical information and modeling
Predicting protein-protein interaction (PPI) binding affinities in unseen protein complex clusters is essential for elucidating complex protein interactions and for the targeted screening of peptide- or protein-based drugs. We introduce MCGLPPI++, a ...

Understanding TCR T cell knockout behavior using interpretable machine learning.

Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing
Genetic perturbation of T cell receptor (TCR) T cells is a promising method to unlock better TCR T cell performance to create more powerful cancer immunotherapies, but understanding the changes to T cell behavior induced by genetic perturbations rema...