Minimally invasive surgery is complex and prone to variation not routinely objectively measured. We established an association between skills and patient outcomes. The evolving application of artificial intelligence techniques could assist intraopera...
International journal of colorectal disease
Jan 20, 2025
PURPOSE: This systematic review examines the utility of deep learning algorithms in predicting pathological complete response (pCR) in rectal cancer patients undergoing neoadjuvant chemoradiotherapy (nCRT). The primary goal is to evaluate the perform...
RATIONALE AND OBJECTIVES: The precise prediction of response to neoadjuvant chemoradiotherapy is crucial for tailoring perioperative treatment in patients diagnosed with locally advanced rectal cancer (LARC). This retrospective study aims to develop ...
BACKGROUND: Specific pelvic bone dimensions have been identified as predictors of total mesorectal excision (TME) difficulty and outcomes. However, manual measurement of these dimensions (pelvimetry) is labor intensive and thus, anatomic criteria are...
BACKGROUND: Accurate prediction of pathological complete response (pCR) and disease-free survival (DFS) in locally advanced rectal cancer (LARC) patients undergoing neoadjuvant chemoradiotherapy (NCRT) is essential for formulating effective treatment...
BACKGROUND: The preservation of the pelvic autonomic nervous system in total mesorectal excision remains challenging to date. The application of laparoscopy has enabled visualization of fine anatomical structures; however, the rate of urogenital dysf...
MAIN OBJECTIVES: We aimed at comparing intratumoral and peritumoral deep learning, radiomics, and fusion models in predicting KRAS mutations in rectal cancer using endorectal ultrasound imaging.
Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
Dec 13, 2024
BACKGROUND & PURPOSE: Deep learning (DL) based auto-segmentation has shown to be beneficial for online adaptive radiotherapy (OART). However, auto-segmentation of clinical target volumes (CTV) is complex, as clinical interpretations are crucial in th...
RATIONALE AND OBJECTIVES: To develop interpretable machine learning models that utilize deep learning (DL) and radiomics based on multiparametric Magnetic resonance imaging (MRI) to predict preoperative lymph node (LN) metastasis in rectal cancer.
INTRODUCTION: Patient body composition (BC) has been shown to help predict clinical outcomes in rectal cancer patients. Artificial intelligence algorithms have allowed for easier acquisition of BC measurements, creating a comprehensive BC profile in ...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.