AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Registries

Showing 71 to 80 of 316 articles

Clear Filters

Development of interpretable machine learning models to predict in-hospital prognosis of acute heart failure patients.

ESC heart failure
AIMS: In recent years, there has been remarkable development in machine learning (ML) models, showing a trend towards high prediction performance. ML models with high prediction performance often become structurally complex and are frequently perceiv...

Risk Factors for Perinatal Arterial Ischemic Stroke: A Machine Learning Approach.

Neurology
BACKGROUND AND OBJECTIVES: Perinatal arterial ischemic stroke (PAIS) is a focal vascular brain injury presumed to occur between the fetal period and the first 28 days of life. It is the leading cause of hemiparetic cerebral palsy. Multiple maternal, ...

Systematic screening by a heart team and a machine learning approach contribute to unraveling novel risk factors in revascularization candidates with complex coronary artery disease.

Polish archives of internal medicine
INTRODUCTION: The baseline characteristics affecting mortality following percutaneous or surgical revascularization in patients with left main and / or 3‑vessel coronary artery disease (CAD) observed in real‑world practice differ from those establish...

Developing machine learning models to predict multi-class functional outcomes and death three months after stroke in Sweden.

PloS one
Globally, stroke is the third-leading cause of mortality and disability combined, and one of the costliest diseases in society. More accurate predictions of stroke outcomes can guide healthcare organizations in allocating appropriate resources to imp...

What do you think caused your ALS? An analysis of the CDC national amyotrophic lateral sclerosis patient registry qualitative risk factor data using artificial intelligence and qualitative methodology.

Amyotrophic lateral sclerosis & frontotemporal degeneration
OBJECTIVE: Amyotrophic lateral sclerosis (ALS) is an incurable, progressive neurodegenerative disease with a significant health burden and poorly understood etiology. This analysis assessed the narrative responses from 3,061 participants in the Cente...

Utilizing machine learning to facilitate the early diagnosis of posterior circulation stroke.

BMC neurology
BACKGROUND: Posterior Circulation Syndrome (PCS) presents a diagnostic challenge characterized by its variable and nonspecific symptoms. Timely and accurate diagnosis is crucial for improving patient outcomes. This study aims to enhance the early dia...

Development of a Predictive Model for Survival Over Time in Patients With Out-of-Hospital Cardiac Arrest Using Ensemble-Based Machine Learning.

Computers, informatics, nursing : CIN
As of now, a model for predicting the survival of patients with out-of-hospital cardiac arrest has not been established. This study aimed to develop a model for identifying predictors of survival over time in patients with out-of-hospital cardiac arr...

Machine learning approach for prediction of outcomes in anticoagulated patients with atrial fibrillation.

International journal of cardiology
BACKGROUND: The accuracy of available prediction tools for clinical outcomes in patients with atrial fibrillation (AF) remains modest. Machine Learning (ML) has been used to predict outcomes in the AF population, but not in a population entirely on a...

Identifying Bladder Phenotypes After Spinal Cord Injury With Unsupervised Machine Learning: A New Way to Examine Urinary Symptoms and Quality of Life.

The Journal of urology
PURPOSE: Patients with spinal cord injuries (SCIs) experience variable urinary symptoms and quality of life (QOL). Our objective was to use machine learning to identify bladder-relevant phenotypes after SCI and assess their association with urinary s...

Predicting ischemic stroke patients' prognosis changes using machine learning in a nationwide stroke registry.

Medical & biological engineering & computing
Accurately predicting the prognosis of ischemic stroke patients after discharge is crucial for physicians to plan for long-term health care. Although previous studies have demonstrated that machine learning (ML) shows reasonably accurate stroke outco...