AIMC Topic: Retrospective Studies

Clear Filters Showing 401 to 410 of 9163 articles

Understanding EMS response times: a machine learning-based analysis.

BMC medical informatics and decision making
BACKGROUND: Emergency Medical Services (EMS) response times are critical for optimizing patient outcomes, particularly in time-sensitive emergencies. This study explores the multifaceted determinants of EMS response times, leveraging machine learning...

Intelligent detection and grading diagnosis of fresh rib fractures based on deep learning.

BMC medical imaging
BACKGROUND: Accurate detection and grading of fresh rib fractures are crucial for patient management but remain challenging due to the complexity of rib structures on CT images.

Machine learning prediction of premature death from multimorbidity among people with inflammatory bowel disease: a population-based retrospective cohort study.

CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne
BACKGROUND: Multimorbidity, the co-occurrence of 2 or more chronic conditions, is important in patients with inflammatory bowel disease (IBD) given its association with complex care plans, poor health outcomes, and excess mortality. Our objectives we...

Machine learning models for prediction of NPVR ≥80% with HIFU ablation for uterine fibroids.

International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group
BACKGROUND: Currently high-intensity focused ultrasound (HIFU) is widely used to treat uterine fibroids (UFs). The aim of this study is to develop a machine learning model that can accurately predict the efficacy of HIFU ablation for UFs, assisting t...

Evaluation and comparison of machine learning algorithms for predicting discharge against medical advice in injured inpatients.

Surgery
BACKGROUND: Whether the application of machine learning algorithms offers an advantage over logistic regression in forecasting discharge against medical advice occurrences needs to be evaluated.

Evaluating the prognostic significance of artificial intelligence-delineated gross tumor volume and prostate volume measurements for prostate radiotherapy.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND AND PURPOSE: Artificial intelligence (AI) may extract prognostic information from MRI for localized prostate cancer. We evaluate whether AI-derived prostate and gross tumor volume (GTV) are associated with toxicity and oncologic outcomes a...

Machine learning-based model for predicting all-cause mortality in severe pneumonia.

BMJ open respiratory research
BACKGROUND: Severe pneumonia has a poor prognosis and high mortality. Current severity scores such as Acute Physiology and Chronic Health Evaluation (APACHE-II) and Sequential Organ Failure Assessment (SOFA), have limited ability to help clinicians i...

Machine learning-based radiomics using MRI to differentiate early-stage Duchenne and Becker muscular dystrophy in children.

BMC musculoskeletal disorders
OBJECTIVES: Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) present similar symptoms in the early stage, complicating their differentiation. This study aims to develop a classification model using radiomic features from MRI T2-w...