AIMC Topic: Retrospective Studies

Clear Filters Showing 741 to 750 of 9539 articles

An early prediction model for gestational diabetes mellitus created using machine learning algorithms.

International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics
OBJECTIVE: To investigate high-risk factors for gestational diabetes mellitus (GDM) in early pregnancy through an analysis of demographic and clinical data, and to develops a machine-learning-based prediction model to enhance early diagnosis and inte...

Predicting the complexity of minimally invasive liver resection for hepatocellular carcinoma using machine learning.

HPB : the official journal of the International Hepato Pancreato Biliary Association
BACKGROUND: Despite technical advancements, minimally invasive liver surgery (MILS) for hepatocellular carcinoma (HCC) remains challenging. Nonetheless, effective tools to assess MILS complexity are still lacking. Machine learning (ML) models could i...

Indication model for laparoscopic repeat liver resection in the era of artificial intelligence: machine learning prediction of surgical indication.

HPB : the official journal of the International Hepato Pancreato Biliary Association
BACKGROUND: Laparoscopic repeat liver resection (LRLR) is still a challenging technique and requires a careful selection of indications. However, the current difficulty scoring system is not suitable for selecting indications. The purpose of this stu...

Deep Learning-Based ASPECTS Algorithm Enhances Reader Performance and Reduces Interpretation Time.

AJNR. American journal of neuroradiology
BACKGROUND AND PURPOSE: ASPECTS is a long-standing and well-documented selection criterion for acute ischemic stroke treatment; however, the interpretation of ASPECTS is a challenging and time-consuming task for physicians with notable interobserver ...

CT Differentiation and Prognostic Modeling in COVID-19 and Influenza A Pneumonia.

Academic radiology
RATIONALE AND OBJECTIVES: This study aimed to compare CT features of COVID-19 and Influenza A pneumonia, develop a diagnostic differential model, and explore a prognostic model for lesion resolution.

Using Machine Learning to Predict Outcomes Following Thoracic and Complex Endovascular Aortic Aneurysm Repair.

Journal of the American Heart Association
BACKGROUND: Thoracic endovascular aortic repair (TEVAR) and complex endovascular aneurysm repair (EVAR) are complex procedures that carry a significant risk of complications. While risk prediction tools can aid in clinical decision making, they remai...

Machine Learning-Based Prediction of Early Complications Following Surgery for Intestinal Obstruction: Multicenter Retrospective Study.

Journal of medical Internet research
BACKGROUND: Early complications increase in-hospital stay and mortality after intestinal obstruction surgery. It is important to identify the risk of postoperative early complications for patients with intestinal obstruction at a sufficiently early s...

Machine learning for the rElapse risk eValuation in acute biliary pancreatitis: The deep learning MINERVA study protocol.

World journal of emergency surgery : WJES
BACKGROUND: Mild acute biliary pancreatitis (MABP) presents significant clinical and economic challenges due to its potential for relapse. Current guidelines advocate for early cholecystectomy (EC) during the same hospital admission to prevent recurr...

Leveraging machine learning for duration of surgery prediction in knee and hip arthroplasty - a development and validation study.

BMC medical informatics and decision making
BACKGROUND: Duration of surgery (DOS) varies substantially for patients with hip and knee arthroplasty (HA/KA) and is a major risk factor for adverse events. We therefore aimed (1) to identify whether machine learning can predict DOS in HA/KA patient...