OBJECTIVE: To develop and evaluate a multidimensional comorbidity index (MCI) that identifies ovarian cancer patients at risk of early mortality more accurately than the Charlson Comorbidity Index (CCI) for use in health services research.
Accurately predicting the prognosis of Gastrointestinal stromal tumor (GIST) patients is an important task. The goal of this study was to create and assess models for GIST patients' survival patients using the Surveillance, Epidemiology, and End Resu...
BACKGROUND: Accurately predicting survival in patients with cancer is crucial for both clinical decision-making and patient counseling. The primary aim of this study was to generate the first machine-learning algorithm to predict the risk of mortalit...
PURPOSE: Machine learning (ML) models have been used to predict cancer survival in several sarcoma subtypes. However, none have investigated extremity leiomyosarcoma (LMS). ML is a powerful tool that has the potential to better prognosticate extremit...
OBJECTIVE: Distant metastasis of thyroid cancer often indicates poor prognosis, and it is important to identify patients who have developed distant metastasis or are at high risk as early as possible. This paper aimed to predict distant metastasis of...
OBJECTIVE: Spinal chordomas are locally aggressive and frequently recurrent tumors with a poor prognosis. Previous studies focused on a Cox regression model to predict the survival of patients with spinal chordoma. We aimed to develop a more effectiv...
Journal of cancer research and clinical oncology
Jul 10, 2023
PURPOSE: Due to the rarity of primary gastrointestinal lymphoma (PGIL), the prognostic factors and optimal management of PGIL have not been clearly defined. We aimed to establish prognostic models using a deep learning algorithm for survival predicti...
Colon and rectal cancers are the most common kinds of cancer globally. Colon cancer is more prevalent in men than in women. Early detection increases the likelihood of survival, and treatment significantly increases the likelihood of eradicating the ...
BACKGROUND: We collected information on patients with rectal adenocarcinoma in the United States from the Surveillance, Epidemiology, and EndResults (SEER) database. We used this information to establish a model that combined deep learning with a mul...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.