Prediabetes and diabetes mellitus (preDM/DM) have become alarmingly prevalent among youth in recent years. However, simple questionnaire-based screening tools to reliably assess diabetes risk are only available for adults, not youth. As a first step ...
Physicians taking care of patients with COVID-19 have described different changes in routine blood parameters. However, these changes hinder them from performing COVID-19 diagnoses. We constructed a machine learning model for COVID-19 diagnosis that ...
AIM: To compare the performance and reading time of different readers using automatic artificial intelligence (AI)-powered computer-aided detection (CAD) to detect lung nodules in different reading modes.
Real-time PCR (RT-PCR) is widely used to diagnose human pathogens. RT-PCR data are traditionally analyzed by estimating the threshold cycle ( ) at which the fluorescence signal produced by emission of a probe crosses a baseline level. Current models ...
BACKGROUND: Computed tomography (CT) is commonly performed when evaluating trauma patients with up to 55% showing incidental findings. Current workflows to identify and inform patients are time-consuming and prone to error. Our objective was to autom...
Magnetic Resonance Imaging (MRI) evidence of spinal cord compression plays a central role in the diagnosis of degenerative cervical myelopathy (DCM). There is growing recognition that deep learning models may assist in addressing the increasing volum...
BACKGROUND: The presence of nodal metastases is important in the treatment of papillary thyroid carcinoma (PTC). We present our experience using a convolutional neural network (CNN) to predict the presence of nodal metastases in a series of PTC patie...
AIM: To evaluate the role that artificial intelligence (AI) could play in assisting radiologists as the first reader of chest radiographs (CXRs), to increase the accuracy and efficiency of lung cancer diagnosis by flagging positive cases before passi...
The development of medical assisting tools based on artificial intelligence advances is essential in the global fight against COVID-19 outbreak and the future of medical systems. In this study, we introduce ai-corona, a radiologist-assistant deep lea...
Diabetic retinopathy (DR) is a leading cause of blindness and affects millions of people throughout the world. Early detection and timely checkups are key to reduce the risk of blindness. Automated grading of DR is a cost-effective way to ensure earl...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.