AIMC Topic: Sensitivity and Specificity

Clear Filters Showing 161 to 170 of 2872 articles

Automatic segmentation and volumetric analysis of intracranial hemorrhages in brain CT images.

European journal of radiology
BACKGROUND: Intracranial hemorrhages (ICH) are life-threatening conditions that require rapid detection and precise subtype classification. Automated segmentation and volumetric analysis using deep learning can enhance clinical decision-making.

Natural language processing-based classification of early Alzheimer's disease from connected speech.

Alzheimer's & dementia : the journal of the Alzheimer's Association
INTRODUCTION: The automated analysis of connected speech using natural language processing (NLP) emerges as a possible biomarker for Alzheimer's disease (AD). However, it remains unclear which types of connected speech are most sensitive and specific...

Diagnostic performance of artificial intelligence in detection of renal cell carcinoma: a systematic review and meta-analysis.

BMC cancer
OBJECTIVES: The detection of renal cell carcinoma (RCC) tumors in the earlier stages is of great importance for more effective treatment. Encouraged by the key role of imaging in the management of RCC, we conducted a systematic review and meta-analys...

A systematic review and meta-analysis on the performance of convolutional neural networks ECGs in the diagnosis of hypertrophic cardiomyopathy.

Journal of electrocardiology
INTRODUCTION: Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden cardiac death in younger individuals. Accurate diagnosis is crucial for management and improving patient outcomes. The application of convolutional Neural Networks (CNN), a ...

Automated diagnosis and classification of temporomandibular joint degenerative disease via artificial intelligence using CBCT imaging.

Journal of dentistry
OBJECTIVES: In this study, artificial intelligence (AI) techniques were used to achieve automated diagnosis and classification of temporomandibular joint (TMJ) degenerative joint disease (DJD) on cone beam computed tomography (CBCT) images.

Forensic sex classification by convolutional neural network approach by VGG16 model: accuracy, precision and sensitivity.

International journal of legal medicine
INTRODUCTION: In the reconstructive phase of medico-legal human identification, the sex estimation is crucial in the reconstruction of the biological profile and can be applied both in identifying victims of mass disasters and in the autopsy room. Du...

Detecting B-cell lymphoma-6 overexpression status in primary central nervous system lymphoma using multiparametric MRI-based machine learning.

Neuroradiology
PURPOSE: In primary central nervous system lymphoma (PCNSL), B-cell lymphoma-6 (BCL-6) is an unfavorable prognostic biomarker. We aim to non-invasively detect BCL-6 overexpression in PCNSL patients using multiparametric MRI and machine learning techn...

AI-assisted radiologists vs. standard double reading for rib fracture detection on CT images: A real-world clinical study.

PloS one
To evaluate the diagnostic accuracy of artificial intelligence (AI) assisted radiologists and standard double-reading in real-world clinical settings for rib fractures (RFs) detection on CT images. This study included 243 consecutive chest trauma pat...